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“To be yourself in a world that is constantly trying to make you something else is the greatest
accomplishment.”

Ralph Waldo Emerson
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Route choice analysis predicts which route a given traveler takes to go from a lo-
cation to another, and it evaluates the flow pattern on a transportation network. It
is one of the most important issues of urban and transport planning; however, the
evaluation of path choice probabilities is not a trivial task due to the requirement of
the path set generation.

Markovian route choice model is an approach of route choice analysis and avoids
to enumerate the path set by evaluating path choice probabilities as the products of
link transition probabilities. It has originally been proposed in the context of traffic
assignment and recently is gathering much attention again because of its consistency
with the logity-type route choice model without path enumeration. In addition to
its high operability, this thesis focuses on that the Markovian route choice model
describes the sequence of decision-making process. The description of the sequential
decision-making process in route choice behavior can expand the possibility of route
choice analysis and would become important in the future urban planning. For these
reasons, we aim at developing a framework of Markovian route choice analysis.

The Markovian route choice model mainly has the following challenges: 1) it
includes the biases in observing route choice behavior and in estimating parame-
ters of route choice model, which are caused from the initial parameter settings, 2)
it is based on the assumption of global optimal decision, that is, travelers are as-
sumed to have knowledge of the entire network and evaluate utilities of all links
with the equivalent weight, and 3) there is the computational instability of the ex-
pected maximum utilities, which are the core idea of the Markovian route choice
model, dependently on the relationship between the network structure and the size
of link utilities. Therefore, 4) the application of the model is restricted into the daily
vehicle route choice behavior, which is easier to observe and can be assumed to fol-
low the global optimal decision based on the simple aspects such as travel time or
travel cost.

This thesis presents the following several new methods for solving the above
challenges and develops an integrated framework of the Markovian route choice
analysis.

http://www.u-tokyo.ac.jp/en/index.html
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1) For reducing the biases in estimating parameters caused from the initial pa-
rameter settings, we propose a novel route measurement model and an estimation
method. The sequential link measurement model identifies link-specific variance of GPS
measurement error, which has been assumed as the given and constant value over
the network in the previous probabilistic route measurement models. The structural
estimation method removes the bias that is included in the prior information, which
is used for correcting the measurement probability in the case that the measurement
error is large. We have some numerical experiments and validate the effectiveness
of the proposed methods. We also apply them to a real pedestrian network of the
city center of Matsuyama city, Japan. This study is addressed in Chapter 3.

2) We propose a dynamic sequential route choice model, which is referred to
as the β-scaled recursive logit model, to describe sequential and somewhat forward-
looking decisions of travelers. It generalizes driver’s sequential decision using the
parameter of the discount factor in the dynamic discrete choice model. The model
is consistent to the previous Markovian route choice model referred to as the recur-
sive logit model as a special case, and it also can model the myopic decision that
is dependent on only link utility that in directly connected with the current state
link of a traveler. We show the model properties through illustrative examples. We
also apply it to the taxi probe data collected in the Tokyo network on the day of the
Great East Japan Earthquake and find out drivers’ myopic decisions in the gridlock
network. This study is shown in Chapter 4.

3) Focusing on that the computational problems of the Markovian route choice
model are caused from the consideration of paths with infinite cycles, we propose
several methods to solve the problems. The time-structured network is a state network
that consists of decomposed networks by decision-making timing, and a route is de-
scribed as a sequence of states in the time-structured network. Moreover, we pro-
pose a method of restricting path set based on the time-space prism, that is, only paths
included in the time-space prism are considered in the route choice model. Thanks
to these methods, infinite cyclic paths are removed, and it is possible to calculate
the expected maximum utilities regardless of network structures, using the back-
ward induction algorithm. The backward induction algorithm is a simple method
for solving the Bellman equation and does not depend on whether the model is
linear or non-linear. We present some illustrative examples to show that the com-
putational challenges of the Markovian route choice model are solved. This study is
shown in Chapter 5.

4) Using the proposed framework of a Markovian route choice analysis, we pro-
pose an activity path choice model, which describes a route choice behavior in time-
space networks. By assuming that the time interval for state transitions is constant,
it can describe the choices of routes, activity locations and durations simultaneously.
We also propose an assignment model for activity-scheduling network using the ac-
tivity path choice model, and it evaluates not only the spatial flow pattern but also
the use of time at each node. We apply the activity assignment model to a pedestrian
network design problem and investigate the Pareto front solutions of widening the
sidewalk width, based on a framework of multi-level and multi-objective program-
ming. This study is addressed in Chapter 6.
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Chapter 1

Introduction

Transport planning has mainly dealt with the alleviation of traffic congestions as the
primary problem, and a number of models for demand forecasting have been de-
veloped. Route choice analysis identifies which route a give traveler takes to go a
place to another, and it has played a great role in transport planning. Recently, sev-
eral paradigm shifts are appearing in the background of transport planning, and the
relationship among transport planning, urban planning and information technolo-
gies is more and more closely connected. For this reason, a more flexible and more
operable framework of route choice analysis is required.

In this thesis, we define the sequence of decision makings in the urban space as
trajectory and aim at developing a method for urban planning based on modeling
trajectories, which is referred to as trajectory-based urban planning. To do so, we focus
on Markovian route choice models, which are powerful tools for describing trajec-
tories in urban networks. The studies in this thesis present some extended methods
for more flexible Markovian route choice analysis.

In this chapter, we first introduce the background of the thesis and also define the
trajectory-based urban planning in Section 1.1. We then present an overview of route
choice analysis and discuss its challenges in Section 1.2. In Section 1.3, we present
our contributions, and finally, we show the outline of the thesis.

1.1 Trajectory-based urban planning

1.1.1 Background

Needless to say, the transformation of urban spaces are closely related to the de-
velopment of transport technologies. The construction of Via Appia had developed
cities along it, and the appearance of steamships and the sailing routes had sim-
ulated the development of port towns. The installation of railroads had changed
the land-use in old towns, and automobiles had widely and continuously extended
urban spaces. The progress of the motorization has affected not only the aspect of
the macroscopic urban development but also microscopic structures of cities. The
great part of the current urban spaces has already designed for cars, such as roads,
parkings, roadside shops, and express ways, etc.

Transport studies have been developed for dealing with the increasing transport
demand, and in the cradle, the transportation equilibrium theory was developed by
Wardrop, 1952 and Beckmann, McGuire, and Winsten, 1956. In 1970s, the discrete
choice model that is based on the random utility theory of McFadden, 1973 has been
exploited, and the foundation of the transportation planning theory has been built.
Thereafter, the theories have been applied to the four step model and the activity-
based approach, which are the typical demand forecasting models in the transport
planning context. In this way, transport planning studies have mainly dealt with
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FIGURE 1.1: Data shift. (a) Trip data from conventional questionnaire
survey. (b) Trajectory data from passive monitoring equipped with
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demand forecasting, and the alleviation of traffic congestions has been assumed to
be the primary problem. For this reason, route choice analysis that is able to predict
the traffic flow on each road is one of the most important topic in transport planning.

Recently, three big paradigm shifts in the background of transport studies are ap-
pearing. Firstly, social needs are changing. The negative effects of transportation on
the environment have been mentioned so far, but recently, the global warming and
the atmospheric pollution are making it gather much attention. In many areas over
the world, the population is aging rapidly, and people are becoming more conscious
of their health. For these reasons, the values of slow mobilities, such as walking and
public transports, come to be reconsidered positively.

Secondly, new transportation systems are appearing. In cities, after the appear-
ance of automobiles, any big shifts of the transportation mode have not been oc-
curred. However, in recent years, the new technologies such as sharing mobilities
and autonomous cars are appearing, and the concept of the ownership and urban
space uses are changing.

Thirdly, the evolution of information technologies has been occurring. In this
decades, mobile sensors that are equipped with Global Positioning System (GPS) or
Wi-Fi, such as smartphones, are facilitating real-time observations of transport be-
havior. Using these technologies, we can observe e.g., pedestrian behavior inner city
centers or buildings and the behavior at the time of emergency events or disasters,
which have been difficult to observe with the conventional measurement tools. New
transportation modes are also based on the development of these technologies.

These developments are transforming urban spaces again. In recent years, in real
cases, the urban planning for making more human spaces have been developing,
such as parking space re-locations for making pedestrian areas, which is referred
to as fringe parking and seen in some European cities (e.g., Freiburg and Strasbourg,
Germany), conversions of the parking space for other purposes (e.g., Park(ing) day in
San Fransisco, the United States), and street space reallocations from for cars to for
pedestrians (e.g., Matsuyama, Japan). In Japan, many cities focus on making better
places for pedestrians, especially in city centers, in response to the aging society and
the trend of urban residence. These trends are accelerated if shared autonomous
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vehicles are installed and the traffic flows inner cities are decreased or controlled by
the emerging systems. As the result, urban spaces that are designed for cars would
be reallocated for other urban activities. Recently, some reports that illustrate the
future urban spaces after the installation of autonomous cars are presented1.

1.1.2 Designing trajectories

As discussed above, in the future urban planning, reallocation of urban spaces from
cars to other transportation modes or human activities is becoming more and more
important as a main issue. In previous transport planning, only the negative aspects
of travels have been focused on, such as travel time and travel cost. Most of trans-
port studies have assumed that travelers minimize their travel costs based on the
global optimal decisions, in modeling travel behavior. However, since designs for
making better places and changing the time use patterns in cities are gathering much
attentions, it is getting more important to describe behavior different from previous
assumptions, for instance, people react attractive spaces on the way of trips and
change their scheduling.

Focusing on the requirement of modeling these continuous decision makings
and availability of high-resolution behavioral data, we introduce the concept of tra-
jectory as the planning unit into the urban planning field. We define a trajectory as
the sequence of decision-making process and refer to the way of urban planning
based on trajectories as trajectory-based urban planning. For this reason, in this thesis,
we aim at developing a modeling framework for analyzing trajectories.

1.2 Focus of the study

For analyzing the sequence of decision-making process, we focus on the Markovian
route choice model. Markovian models describe the sequential decision makings
based on state transition probabilities, and the Markovian route choice model ap-
plies it to the context of the route choice model. The Markovian route choice model
is important not only because it is suitable to describe sequential decisions but also
because it can avoid the path set generation for the route choice analysis. In this sec-
tion, we first present the framework of the general route choice analysis and after-
ward introduce the that of Markovian route choice analysis. In the end, we address
the objectives of the thesis.

1.2.1 Route choice analysis

Consider a transport network with nodes and links. Generally, a node denotes an
intersection, and a link denotes a road between two intersections. Route choice anal-
ysis deals with identifying route, which is a sequence of links (or nodes) and is taken
by a given traveler who goes from a location to another. The most typical type of
route choice model is the multinomial logit (MNL) model, which is based on the
random utility maximization (RUM) theory (McFadden, 1973), and it is described as
follows:

r = arg max
r∈Cn

{ũnr}, (1.1)

1"Making better places: Autonomous vehicles and future opportunities", 2016 by WSP | Parsons
Brinckerhoff, Farrells.

http://www.wsp-pb.com/Globaln/UK/WSPPB-Farrells-AV-whitepaper.pdf


4 Chapter 1. Introduction

Choice set

Network

Correlation structure

Preference

Data

Route measurement model

Route choice model

Assignment

Decision rule

FIGURE 1.2: Framework of route choice analysis

where

ũnr = unr + εnr (1.2)

is the random utility function when a traveler n chooses a route r from the choice set
Cn. unr is the deterministic component of the utility and εnr is the error term, which
expresses model uncertainties, such as attributes that the modeler cannot observe
and the heterogeneity of travelers, etc. In the MNL model, the error term is assumed
as i.i.d extreme value type I, and the choice probability of r is formulated as follows:

Pnr =
exp(µunr)

∑r′∈R exp(µunr)
, (1.3)

where µ is the scale parameter of the distribution and strictly positive. This is the
fundamental model of route choice analysis. We show the framework of route choice
analysis in Figure 1.2. For calculating route choice probabilities, rout choice models
require the information of choice set, correlation structure, decision rule, and route
choice preference. Using route choice probabilities, the network flow pattern is eval-
uated by assignment models. Route choice preferences are unknown, but they are
estimated using route choice data. It is usually difficult to observe route choice be-
havior, and recently, passive monitoring with Global Positioning System (GPS) has
been used in these decades. However, GPS data has measurement uncertainties, and
probabilistic route measurement models have been developed. In this paper, we de-
fine the integrated framework of modeling route choices, evaluating network flow
patterns, observing and estimating route choice models as the route choice analysis.

Route choice model is one of the most powerful framework of demand forecast-
ing, because it can describe the sequence of choice behavior. It can identify not only
a route between an origin-destination pair in a transportation network, but also mul-
timodal routes including parking choice and activity paths in a time-space network,
if we apply it to extended networks. However, since a route is a combination of links
on a network, the number of alternative is often huge. For evaluating route choice
probabilities based on route choice models, as is seen in Figure 1.2, the definition of
the choice set Cn is required, but it is a not trivial task. Consider simple grid networks
with n links on each edge, the number of feasible paths of each network is shown
in Table 1.1. Even in small networks, such as n = 3 or n = 4, the numbers of feasi-
ble paths are already 184 and 8, 512. If n becomes larger, the number exponentially
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TABLE 1.1: The number of simple paths in n-grid networks

n simple paths
1 2
2 12
3 184
4 8,512
5 1,262,816
6 575,780,564
7 789,360,053,252
8 3,266,598,486,981,640
9 41,044,208,702,632,496,804
10 1,568,758,030,464,750,013,214,100
11 182,413,291,514,248,049,241,470,885,236
12 64,528,039,343,270,018,963,357,185,158,482,118
13 69,450,664,761,521,361,664,274,701,548,907,358,996,488
14 227,449,714,676,812,739,631,826,459,327,989,863,387,613,323,440
15 2,266,745,568,862,672,746,374,567,396,713,098,934,866,324,885,408,319,028

increases and becomes uncountable soon. A number of algorithms for generating
the choice set have been proposed, and some method of sampling alternatives have
been presented. However, they are not applicable to prediction yet, and moreover,
the correct choice set is unknown especially in the case that cyclic paths or detour
paths are considered, e.g., in pedestrian networks.

1.2.2 Markovian route choice analysis

For dealing with the problem that is discussed above, this thesis focuses on Marko-
vian route choice analysis, which is based on Markovian route choice model. Marko-
vian model is one of the most representative probability process models and has
high operability. It was first applied to the traffic assignment model, and recently, it
is linked to the framework of discrete choice model. The detailed review of Marko-
vian route choice models is presented in Chapter 2. We show the framework of the
current Markovian route choice analysis in Figure 1.3. The key point of the frame-
work is that Markovian route choice models calculate node transition probabilities
instead of route choice probabilities. Then, they do not require the choice set gener-
ation and can consider the set of all feasible paths, which is referred to as universal
set U , without path enumeration.

1.2.3 Scopes of the thesis

Markovian route choice analysis is high operable and gathers much attention re-
cently; however, there are three main limitations that are addressed, which are shown
as (a), (b) and (c) in Figure 1.3.

(a) Biases in estimating route choice model
First limitation is regarding data and estimation of route choice models. Despite

the fact that Markovian route choice models do not require path enumeration for
calculating route choice probabilities, most probabilistic route measurement models
are still based on path-based and require the definition of the path set to evaluate
the measurement probabilities of path candidates to observed data. For defining
the path candidate set, the variance of GPS measurement error is often given as a
constant value over network. However, in real cases, the value of the variance is
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unknown and heterogeneous over network. Since the measurement probabilities
are dependent on the value of the variance, the variance that is given as arbitrary
and constant over network can cause the biased measurement probabilities. As the
result, the estimation of route choice model can be biased.

(b) Global optimal decision over network
Most of route choice models describe the global decision of a traveler, which

means that he/she chooses the route between an origin-destination pair before de-
parting from the origin (pre-trip). This is based on the assumption that travelers have
information of the entire network and evaluate utilities of all links with the equiv-
alent weight. Markovian route choice models that have been proposed so far are
also based on this assumption, as the output of the models are proved to be equiva-
lent to that of the path-based MNL model. However, this assumption may be strong
in real cases, and it may be more realistic that travelers evaluate utilities of links
close to them with larger weight than those of links distant from them. For instance,
gridlock networks and pedestrian networks are typical cases. In high-congested
networks, such as gridlock networks, travelers try to avoid congestions and make
decisions at each intersection based on visible information. Pedestrians can also be-
have myopically, e.g., they react spacial attributes of walking space and unplanned
activities are generated on the way of trips. For describing these behavior, existing
models do not suit.

(c) Computational challenges regarding cyclic paths
Markovian route choice models use the expected maximum utility to the des-

tination of each node to calculate transition probabilities that are equivalent to the
MNL model with the universal set. However, in the case that networks have cyclic
structures, the expected maximum utilities cannot always be solved. The condition
of the solution is dependent on the balance between the network structure and the
size of link utilities uij. More theoretically, the following equation has to be satisfied
so that the Markovian route choice models has the solution:

ρ(W) ≡ max
h

{|λh|} < 1, (1.4)

where λh is the h-th eigenvalue of the incidence matrix W defining link utilities,
i.e., wij = uij, and ρ(W) is known as the spectral radius. If the spectral radius is
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larger or equal to one, the expected maximum utilities diverge and the transition
probabilities of Markovian route choice models cannot be evaluated. As mentioned,
this problem arises from the cyclic structures of the network. For example, if there is
a cycle with positive utility, the expected utility of a route that passes the cycle again
and again becomes large and finally diverges. Previous studies assume that the link
utilities are always negative, uij < 0, ∀(i, j); however, in the estimation process the
computational instability remains, because parameters of route choice preferences
vibrate and the link utilities can be larger or equal to zero. Moreover, uij < 0 means
that we cannot consider link attributes that are possible to have positive effects to
route choice behavior, such as the number of lanes, the attractiveness of shops along
the street, the width of sidewalk, etc. In order to make Markovian route choice
analysis more flexible and powerful tool, we have to deal with these computational
challenges.

1.3 Contributions

We show the entire of contribution of the thesis in Figure 1.4. Our contributions
can be divided into the main four topics: Data and Estimation, Model formulation,
Assignment algorithm, and Applications, which are described as follows.

Data and Estimation
Our first contribution is regarding data and estimation of route choice models,

which responds to problem (a) in the previous section. We propose an estimation
framework for obtaining parameters of route choice models with less biases, us-
ing GPS data with measurement uncertainties. We focus on that the variance of
GPS measurement errors is not uniform in high-resolution networks, and propose
a sequential link measurement model based on the Bayesian approach. It enable us to
estimate the variance as the specific value of each link, while the value is assumed
as given and uniform over a network in previous works. Moreover, we introduce a
structural estimation method in order to reduce the biases included in the uncertainty
of prior information. We examine this approach through twins experiments, and
apply to a real pedestrian network of Matsuyama-city, Japan.

Modeling
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Secondly, we focus on that the sequential and somewhat forward-looking de-
cisions in route choice behavior. This work is corresponding to the problem (b) in
Section 1.2.3. We use the concept of time discount rate in the dynamic discrete choice
models (e.g., Rust, 1987), and interpret it as a parameter describing a mechanism of
route choice behavior. We propose a β-scaled recursive logit model as a generalized
framework of the recursive logit (RL) model (Fosgerau, Frejinger, and Karlstrom,
2013) by incorporating the sequential discount rate into the RL model. We present il-
lustrative examples which indicate the effect of the sequential discount rate on eval-
uating path probabilities, network patterns, and cyclic path selectivity. Moreover,
we estimate the β-scaled RL model using taxi probe data in a disaster network of the
Tokyo Metropolitan area.

Assignment algorithm
The third contribution is regarding the path set restriction. We focus on the fact

that in real cases, it is very improbable that paths including infinite cycles are cho-
sen by travelers. In order to describe this mechanism, we present a time-structured
network, where travelers’ states are decomposed by decision-making time period,
and propose a method for restricting path sets based on the time-constraint. On this
network, we model sequential link choice behavior of travelers based on Markovian
route choice models. This idea is a solution of the three computational challenges of
the assignment based on Markovian route choice model: unreasonable cyclic flows,
computational instability (discussed in Section 1.2.3), and amplification of the IIA
property, in reasonable time. We present several numerical examples to examine the
model properties, and apply it to a stochastic user equilibrium (SUE) problem and a
network-GEV based model.

Application
Finally, we apply the model and the algorithm to the description of pedestrian

activity path choice behavior in city centers, for evaluating the continuity of moving
and staying behavior of pedestrians in time-space networks. The activity assign-
ment model can evaluate not only link flows but also duration time at each node
integrally. The sequential discount rate and the time-constraint are important pa-
rameters for describing pedestrian activities. Moreover, we present a network de-
sign problem based on the activity assignment model. The problem is a multi-level
and multi-objective programming, and the Pareto front solutions are investigated by
a neighborhood search algorithm.

1.4 Outline of the thesis

This thesis consists of four main topics of which each topic has been presented in at
least one international conference and is corresponding to one or two articles (see
Appendix D). The outline is as follows.

• Chapter 2 reviews the literature. We present the state-of the-art of Markovian
route choice analysis and discuss its challenges with some illustrative exam-
ples.

• Chapter 3 focuses on estimating route choice models using uncertain GPS data.
We present a novel route measurement model and a estimation method to re-
duce biases in parameter estimation of route choice models. These methods are
referred to as sequential link measurement model and structural estimation method.
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• Chapter 4 focuses on modeling route choice behavior and deals with the prob-
lem regarding decision-making dynamics. We focus on that the utility evalua-
tion is heterogeneous dependently on spatial relation, and propose a β-scaled
recursive logit model.

• Chapter 5 focuses on the computational challenges of Markovian route choice
models and the selectivity of cyclic paths. We introduce a novel network de-
scription referred to as time-structured network, and based on the network, we
propose a method of the path set restriction.

• Chapter 6 applies the methods proposed in previous sections to pedestrian ac-
tivities in time-space networks and extends it to the network design problem.

• Chapter 7 presents conclusions and future works.
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Chapter 2

Literature review

In this chapter, we introduce the state-of-the-art studies of the route choice analysis.
We focus on the route choice analysis in static and deterministic networks, not in
dynamic and stochastic networks, where the link attributes are time-dependent and
follow probability distributions (see Chapter 4 for this discussion). We first men-
tion that Ben-Akiva and Lerman, 1985 introduced a comprehensive methodology of
discrete choice analysis, and Bovy and Stern, 1990 presented an overview of route
choice modeling through entire book. Ramming, 2001 and Frejinger, 2008 also pre-
sented comprehensive reviews of the route choice analysis. Regarding Markovian
route choice models, which are discussed in Section 2.2, Mai, 2015 is also a helpful
reference.

2.1 Route choice analysis

Consider a directed connected graph G = (N ,A) as a transportation network,
where N is the set of nodes and A is the set of links. The route choice analysis
deals with identifying which route a traveler takes to go from a node to another in
the transportation network, and predicts the flows on the network. The route choice
preferences are investigated using observed route choice data in real networks. In
route choice analysis, a route is a combination of links; therefore, the route choice
problem is often characterized by a large number of candidates in real road net-
works, and routes are spatially correlated with each other. These are the reason why
the problem is complicated and is generally difficult to solve, and a number of stud-
ies have been presented in the transportation field.

2.1.1 Shortest path problem

The simplest description of a route choice model is the shortest path problem which
assumes that a given traveler take a route with the minimum variable such as travel
time or travel cost in a transport network. The problem is formulated as follows:

r = arg min
r
{cr}, (2.1)

where r is a route in the network, which is described as a sequence of links

r = (a1, ..., aj, ..., aJ), (2.2)

and cr is the cost of route r. Naively, the number of paths is |A| × |A| × · · · × |A| =
|A|J , which is often uncountable. Dijkstra’s algorithm (Dijkstra, 1959) is a repre-
sentative algorithm for solving shortest path problems in the case of single-source



12 Chapter 2. Literature review

problems with positive link costs. A shortest path problem is a simple and rea-
sonable description; however, it is difficult to assume that the problem reflects the
decisions of travelers, because travelers cannot necessarily get perfect information of
a network and are heterogeneous with each other. Actually, shortest path problems
are used in the process of evaluating network flows as all-or-nothing loading proce-
dure, which is one of steps of the user equilibrium (UE) model. Therefore, in order
to reflect individual decision making, the route choice problem is often described as
a stochastic one based on the framework of the discrete choice analysis. In the fol-
lowing sections, we focus on the probabilistic route choice models and present their
review.

2.1.2 Multinomial logit model

The (probabilistic) route choice model uses the framework of the discrete choice
analysis, which is based on the random utility maximization (RUM) framework (Mc-
Fadden, 1978; Ben-Akiva and Lerman, 1985), and it can be described as follows:

r = arg max
r∈Cn

{ũnr}, (2.3)

where ũnr is the utility when individual n chooses route r, which is a stochastic
variable, and it includes the unobserved attributes from the researchers. Cn is the
choice set of routes that individual n considers, and it is defined by the modeler. It
is assumed that the utility of route r can be divided into the deterministic term unr
and the error term εnr as

ũnr = unr + εnr. (2.4)

The error term εnr captures the uncertainty of the model. The deterministic term
includes attributes of the route such as the travel time, the distance and the number
of crossings, as well as the socio-economic characteristics of the traveler. It is often
described as a linear formulation unr = unr(xnr; θ) = ∑k θkxnr,k, where xnr is a vector
of the attributes and θ is a vector of unknown coefficients to be estimated.

Route choice models evaluate the probability of paths that is included in the
choice set. Equation 2.3 indicates that travelers are assumed to maximize their ran-
dom utilities by choosing routes. That is, the probability that a traveler n chooses
route r is formulated as follows:

P(r|Cn) = P [unr > uns; r ̸= s, ∀s ∈ Cn] = P[unr + εnr > vns + εns; r ̸= s, ∀s ∈ Cn],
(2.5)

then,

P(r|Cn) = P[εnr > uns − unr + εns; r ̸= s, ∀s ∈ Cn]. (2.6)

Defining the joint probability distribution function of the all error terms, f (εnr; r ∈
Cn), Equation (2.6) can be re-formulated as:

P(r|Cn) =
∫ +∞

εn1=−∞

∫ un1−un2+εn1

εn1=−∞
· · ·

∫ un1−un|Cn |+εn1

εn1=−∞
f (εnr; r ∈ Cn)dεn|Cn| · · · dεn2dεn1.

(2.7)
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The joint distribution function F(εnr; r ∈ Cn) is given by the partial differential of
Equation (2.7) by εnr:

Fr(εnr; r ∈ Cn) =
∂F(εnr; r ∈ Cn)

∂εnr
(2.8)

The most representative model for describing the route choice probabilities is the
multinomial logit (MNL) model. The MNL model assumes that the error term of
the utility is independent and identically distributed (i.i.d) extreme value type I, and
then the CDF and PDF are formulated as follows:

F(εnr) = exp[− exp(−µεnr − η)] (2.9)
f (εnr) = µ exp[− exp(−µεnr − η)] · exp(−µεnr − η) (2.10)

where, µ is the positive scale parameter that means the degree of variation of εnr. η
is the location parameter which means the mode of the distribution. In this case, the
mean is η + γ/µ, where γ is the Euler’s constant, and the variance is π2/6µ2. The
MNL model is obtained by substituting Equation (2.9)(2.10) for Equation (2.7),

P(r|Cn) =
exp(µunr)

∑s∈Cn
exp(µuns)

. (2.11)

The MNL model introduce a fundamental framework for modeling route choice
behavior; however, the MNL model cannot describe correlation structure among
path alternatives due to its independence of irrelevant alternatives (IIA) property.

2.1.3 Description of correlation structures

Since routes in transportation networks are spatially correlated with each other, a
number of route choice models for describing the correlation structures have been
proposed.

The C-logit model (Cascetta et al., 1996) and the Path-Size logit (PSL) model (Ben-
Akiva and Bierlaire, 1999) are the extended MNL models, which incorporate the
commonality factors into the utility function of paths and describe the overlapping
effect as the additional dis-utilities. Ramming, 2001 and Frejinger and Bierlaire, 2007
presented the alternatives of the Path Size correlation factors.

Another approach is developing the generalized extreme value (GEV) model,
which is proposed by McFadden, 1978 and can describe the correlation structures
among alternatives in the framework of the closed form expression. The cross nested
logit (CNL) model (Vovsha and Bekhor, 1998), which is referred to as the link-nested
logit (LNL) model, the paired combinatorial logit (PCL) model, and the generalized
nested logit (GNL) model Bekhor and Prashker, 2001 have been proposed.

The multinomial probit (MNP) model, and the mixed logit (MXL) model, which
is also referred to as the error component (EC) model, are also used for directly cap-
turing the structure of variance-covariance among path alternatives by e.g., Bolduc
and Ben-Akiva, 1991, Yai, Iwakura, and Morichi, 1997, Bekhor, Ben-Akiva, and Scott
Ramming, 2002, and Frejinger and Bierlaire, 2007.

2.1.4 Path set generation algorithms

For the evaluation of the route choice probabilities using the route choice model, the
choice set that traveler n considers, Cn should be defined. However, as mentioned
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in Chapter 1, the choice set of paths by traveler is unknown to the analyst. Also, the
set of all possible paths, which is referred to as the universal choice set U , cannot be
enumerated, because paths are the combinations of links in transportation networks.
For this reason, a number of algorithms for generating path set have been proposed
so far. Regarding the comprehensive discussion of this topic, Bekhor, Ben-Akiva,
and Ramming, 2006 reviews the path set generation algorithms and compares the
estimation results of route choice models in large-scale urban networks from the
view points of the selectivity of routes and computational times. Bovy, 2009 points
out the difference of the choice set generation of route choice models from that of
other discrete choice models and summarizes its characteristics.

In the context of route choice models, the master choice set by origin-destination
pair M ⊆ U is often first generated. Moreover, since the choice set is assumed to be
individual-specific, the choice set defined by traveler Cn ⊆ M should be generated.
For the generation of M and Cn, the path generation algorithms are used. The k-
shortest path algorithm (Eppstein, 1998), which enumerates the first k shortest paths
from the origin to the destination, is one of the most well-known methods for gen-
erating the master choice set M. The link penalty method (Barra, Perez, and Anez,
1993) and the link elimination method (Azevedo et al., 1993) are popular heuristics
approaches, and they update the path set following their rules after identifying the
shortest path. The labeling method (Ben-Akiva, Cyna, and Palma, 1984) extracts the
optimal path for each link attribute, such as travel time, distance and generalized
cost, and constructs the set of the optimal paths, which are labeled as "minimize
time", "minimize distance", and so on. The branch-and-bound method (Friedrich, Hof-
säß, and Wekeck, 2001; Prato and Bekhor, 2006) enumerates a tree, which consists
of links, and restricts it by several constraints in terms of direction, travel time, de-
tour, similarity, and turns. The elimination by aspect method (Tversky, 1972) restricts
the master set M into the choice set by traveler Cn using several aspects of the al-
ternatives. Frejinger, Bierlaire, and Ben-Akiva, 2009 propose a method for sampling
alternatives, where the choice set by traveler Cn is generated without the definition
of the master set M. Using the sampling probabilities of the alternatives, which are
calculated based on a weighted random work algorithm, the path probabilities are
corrected.

2.1.5 Route choice observation

The more precious prediction of the route choice behavior requires the its obser-
vation in real networks for investigating the route choice preferences of travelers.
However, it is usually difficult to observe the route choice behavior by both con-
ventional questionnaire surveys using mail or telephone and passive data collection
from travelers who are equipped with the sensors with Global Positioning System
(GPS). Since a route is a sequence of links in transportation networks, travelers often
cannot answer the correct route that they take. Passive data based on GPS technol-
ogy has several advantages over conventional surveys, because trip data is collected
automatically. Moreover, in recent years, emerging technologies, such as probe vehi-
cles and connected vehicles, contribute to facilitating a number of and real-time data
collection. They are expected to develop extremely transportation studies. However,
collected GPS data is usually characterized by coordinates in the two-dimensional
surface; therefore, it is not corresponding in format to a network that the modeler
uses for the route choice analysis. Moreover, GPS data often has localization error.
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To deal with these problem, a number of methods for matching GPS dat to trans-
portation networks, which are often referred to as map matching (MM) algorithms,
have been proposed in these last few decades.

MM algorithms can be categorized into three groups: geometric (e.g., White,
Bernstein, and Kornhauser, 2000), topological (e.g., Greenfeld, 2002; Quddus et al.,
2003; Velaga, Quddus, and Bristow, 2009), and probabilistic (e.g., Ochieng, Quddus,
and Noland, 2003; Quddus, Ochieng, and Noland, 2006; Hunter, Abbeel, and Bayen,
2014). Quddus, Ochieng, and Noland, 2007 comprehensively reviewed MM meth-
ods presented before early 2000s. Most of the algorithms are based on sequential link
inferences, where the true location is inferred for each location data in chronological
order, because they are aimed at applying on-line navigation systems. On the other
hand, in transportation studies, researchers require the actual path as a sequence of
links rather than on-line identification of the traveler locations (Bierlaire, Chen, and
Newman, 2013).

Pyo, Shin, and Sung, 2001 and Bierlaire, Chen, and Newman, 2013 propose path-
based and probabilistic MM algorithms, which evaluate the likelihoods of path can-
didates regarding all GPS data in a trip and do not identify to a specific path. Chen
and Bierlaire, 2015 presents a MM algorithm that includes the transportation mode
detection, for applying in multi-modal networks.

Recently, some studies proposed advanced methods based on bayesian approaches
(Fuse and Nakanishi, 2012; Danalet, Farooq, and Bierlaire, 2014; Chen and Bierlaire,
2015). In bayesian approaches, the path likelihoods are evaluated by both measure-
ment probabilities calculated by probabilistic MM algorithms and the path choice
probabilities as the prior given by route choice models. Based on the path likeli-
hoods, the paths are identified. The correction of the path likelihood using the path
choice probabilities of route choice model is helpful of inferring paths in the case
that the measurements have large uncertainties, e.g., when the localization is weak
and the network is dense (Danalet, Farooq, and Bierlaire, 2014).

2.1.6 Maximum likelihood estimation

The parameter estimation of route choice models is generally implemented by the
maximum likelihood estimation (MLE). The problem of estimating parameters is
defined to maximize the following log-likelihood function:

max
θ

LL(θ) = log

(
N

∏
n=1

∏
r∈Cn

Pn(r|Cn; θ)δn
r

)

=
N

∑
n=1

∑
r∈Cn

δn
r log Pn(r|Cn; θ) (2.12)

where δn
r equals one if an individual n chooses route r, which is defined from the

route choice observation discussed in Section 2.1.5, and equals zero, otherwise. By
solving this problem defined by Equation (2.12), we can investigate the route choice
preferences of travelers.
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2.1.7 Joint estimation of route choice models

Bierlaire and Frejinger, 2008 proposed a framework to estimate route choice models
as the ambiguity of observations remains. In the framework, the following probabil-
ity of reproducing the vector of observations m̂ is maximized to estimate parameters:

p(m̂) = ∑
r∈R

p(m̂|r; σ)p(r|R; θ), (2.13)

where r is a route in choice set R. p(m̂|r; σ) is the measurement equation, which
gives the probability that m̂ is observed if r is the actual path, where σ is the pa-
rameter and often assumed as the variance of GPS measurement error. p(r|R; θ) is
the route choice model, which gives the probability that path r is selected within
the choice set R, where θ is the unknown parameters to be estimated. As is seen in
Equation (2.13), the paths are regarded as latent variables, and a specific path is not
identified. The measurement probabilities are calculated by e.g., path-based proba-
bilistic MM algorithms. In evaluating the probabilities in Equation (2.13), similarly
to route choice models, probabilistic models for route choice observations also suffer
from the problem of the path set generation. Bierlaire and Frejinger, 2008 propose
the concept of domain of data relevance (DDR) for restricting the set of observed path
based on GPS localization errors. A path is included in the set of path candidates
only if it is associated with the area of the sequence of data.

2.2 Markovian route choice analysis

Markovian model is one of the most fundamental and the most important stochastic
processes, which has the Markov property. Consider a stochastic process {Xn; n =
0, 1, 2, ...} on a discrete state space S , the Markov property can be expressed as fol-
lows:

P(Xn+1 = j|Xn = i, Xn−1 = in−1, ..., X0 = i0) = P(Xn+1 = j|Xn = i) (2.14)

where j, i, in−1, ..., i0 ∈ S are the state variables. This means that the distribution of
the future state is dependent on only the current state. If the stochastic process is
time homogeneous, it is described using the transition probability matrix P (|S| ×
|S|), and Equation (2.14) is equal to an entry

P(Xn+1 = j|Xn = i) = p(j|i) ∀n. (2.15)

The transition probability satisfy

p(j|i) ≥ 0, ∑j∈S p(j|i) = 1. (2.16)

Also, by the Chapman-Kolmogorov equation

pm+n(j|i) = ∑
k∈S

pm(k|i)pn(j|k), (2.17)

where pm(j|i) is the m-step transition probability, the following equation is estab-
lished:

Pn = {pn(j|i)|∀i, j ∈ S} . (2.18)
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Therefore, if the transition probability matrix P is obtained, the transition probabili-
ties of any step can be calculated.

1 4

2

3

FIGURE 2.1: An example network defining transition probabilities

Markovian route choice models focus on that a path, which is a route in trans-
portation network graphs, can be decomposed into the sequence of nodes (links),
and they describe the flows or path choice probability using the state transition prob-
abilities, where states correspond to nodes (links). For example, in the network with
transition probabilities of Figure 2.1, the traffic flow departing from node 1, Q is as-
signed to the connecting links following the transition probabilities: Q/2 to link 12,
and Q/2 to link 13. In the same way, the link flows xij are calculated as x12 = Q/2,
x13 = Q/2, x23 = Q/10, x24 = 2Q/5, and x34 = 3Q/5. When we assume that
the flow pattern has the Markov property, the flow conservation principle is hold at
every node:

∑
h

xhi − ∑
j

xij = 0 ∀i ∈ N , (2.19)

where we use Q instead of ∑h xhi at the origin and instead of ∑j xij at the destination.
As the result, the relationship between the transition probabilities and the link flows
can be expressed as follows,

p(j|i) =
xij

∑j′ xij′
∀(i, j) ∈ A, (2.20)

and using Equation (2.18), the path probability is given as the product of the transi-
tion probabilities:

P(r = [i0, ..., iJ ]) =
J−1

∏
j=0

p(ij+1|ij). (2.21)

With the advantage of this property, Markovian approaches have been devel-
oped as a alternative of Dial’s algorithm for the logit-type network assignment,
which can consider all possible paths including cyclic ones. It also has a high op-
erability, because it is based on matrix representations, and recently, many models
have been presented in the context of route choice analysis. We present an overview
of the Markovian models in the route choice problem, which is summarized in Fig-
ure 2.2. In this section, we review the Markovian models for route choice analysis.
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(Sasaki, 1965)

MCA

(Dial, 1971)

Dial’ s algorithm

(Van Vliet, 1981)

Dial-Logit
MCA-Logit

n-GEV-based

Link-based SUE

DP - SUE

RL

NRL GRL

(Bell, 1995; Akamatsu, 1996)

(Baillon and Cominetti, 2008)

（Fosgerau et al., 2013)

(Papola and Marzano, 2013; 
Hara and Akamatsu, 2014)

(Akamatsu, 1997)

<Cyclic graph>

<Sequential link choice>

<Econometric model>

(Mai et al., 2015)  (Mai, 2016)

FIGURE 2.2: Overview of Markovian models in the route choice con-
text

2.2.1 Dial’s algorithm

We start to review the Dial’s algorithm (Dial, 1971), which is one of the most pop-
ular procedures for the calculation of a logit-type route choice model in the traffic
assignment context. Dial’s algorithm is described as follows:

Step 1: Preliminaries. Calculating the shortest path cost from nodes o to i, r(i),
∀i ∈ N and that from nodes i to d, s(i), ∀i ∈ N . Defining the link likelihood
lij for each link as follows:

lij =
{

exp[µ{r(j)− r(i)− cij}], if r(i) < r(j), s(i) > s(j)
0, otherwise

(2.22)

where cij is the cost of link (i, j). The link likelihood always takes the value
between zero and one.

Step 2: Forward pass. Calculating link weight wij for each link in ascending se-
quence with respect to r(i),

wij =

{
lij, if i = o

lij ∑h whi, otherwise.
(2.23)

When the destination node d is reached, go to Step 3.

Step 3: Backward pass. Assigning a flow xij in descending sequence with respect
to r(i), which is starting with the destination node d,

xij =

{
qod

wij

∑h whj
, if j = d(

∑k xjk
) wij

∑h whj
, otherwise.

(2.24)
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Equation (2.22) means that Dial’s algorithm considers only paths that never include
any move which goes away from the destination in terms of travel time, which are
referred to efficient paths.

This algorithm is proven to be equivalent to the logit-type assignment model by
Van Vliet, 1981.

Proof. In Dial’s algorithm, based on the procedure of Equation (2.24), the choice
probability of route r = [o, i1, i2, ..., iJ , d] can be given as

Pr =
wiJ d

∑h whd

wiJ−1iJ

∑h whiJ

· · · · · wi1i2

∑h whi2

woi1

∑h whi1
. (2.25)

By the definition of the link weights, wij = lij ∑h whi, Equation (2.25) is transformed
as

Pr = liJ dliJ−1iJ · · · · · li1i2 loi1

/
∑
h

whd, (2.26)

and, moreover, by the definition of the link likelihood, the numerator of the right
side of Equation (2.26) is

liJ dliJ−1iJ · · · · · li1i2 loi1

= eµ{r(d)−r(iJ)−ciJ d}eµ{r(iJ)−r(iJ−1)−ciJ−1 iJ } · · · · · eµ{r(i2)−r(i1)−ci1 i2}eµ{r(i1)−r(o)−coi1}

= eµ{r(d)−∑ij∈r cij}

= eµ{r(d)−cr}, (2.27)

where cr is the cost of path r. By the flow conservation principle,

∑
r

Pr = ∑
r

eµ{r(d)−cr}

∑h whd
= ∑

r

eµ{r(d)−cr}

∑h whd
=

eµ{r(d)}

∑h whd
∑

r
e−µcr = 1, (2.28)

finally, we obtain the following expression by substituting Equation (2.27) and (2.29)
for Equation (2.26),

Pr =
e−µcr

∑r′ e−µcr′
. (2.29)

This is the probability of the logit-type route choice model. ■

Dial’s algorithm is equivalent to the Logit-type assignment model without re-
quirement of the path enumeration, and it has an advantage in that it can be easily
applied to a large scale network. However, the algorithm sometimes produces an
unrealistic flow pattern due to restricting the path set to the set of efficient paths, e.g.,
no flow is loaded on paths that are often used by travelers in reality. Moreover, the
stochastic user equilibrium using Dial’s algorithm does not converge to the exact so-
lution because the set of efficient paths can change dependently on link flows at each
iteration. Leurent, 1997 proposed a solution of the latter problem; however, it also
can generate unreasonable flow patterns and cannot consider cyclic paths.

2.2.2 Markov chain assignment

Sasaki, 1965 is the first to propose a method for traffic assignment based on a Marko-
vian model, which is described as follows. Consider a directed connected graph
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G = (N ,A), where N is the set of nodes and A is the set of links. N contains the set
of origins O ⊆ N and the set of destinations D ⊆ N . The number of nodes included
in each set is |N | = n, |O| = no and |D| = nd. We assume that the nodes correspond
to the states in Markovian model, and travelers repeat the transition from one node
to another until they arrive at their destinations. The MCA uses the matrix of tran-
sition probabilities as follows:

P =

 I 0 0
 nd

0 0 Q1 no
R 0 Q2 n − no − nd
nd no n − no − nd

(2.30)

where I (nd × nd) is the identity matrix, Q1 and Q2 are the matrices of transition prob-
abilities to nodes that are not included in O or D (transient nodes), from origins and
from transient nodes, respectively. R is the matrix of transition probabilities from
transient nodes to destinations. In Markovian model, the probability that a traveler
at the initial state i takes the state j through k-step is given as the (i, j) element of the
matrix Qn. Considering all number of steps, the total probability of the transition
transition probabilities from i to j is given as follows (assuming both of two nodes
are the transient nodes):

I + Q2 + Q2
2 + · · · = (I − Q2)

−1, (2.31)

where (I−Q2)−1 is the inverse matrix of (I−Q2), and we can get this inverse matrix
only if the matrix Q2 is a convergence matrix. Because the first step of transition is
necessarily from origin, the matrix of node choice probabilities by origin is given as
Q1(I − Q2)−1. Using this node choice probability P(i) and the transition probability
p(j|i), which is the element of P, the link choice probability by origin is given as,

po
ij = Po(i) · p(j|i) ∀(i, j) ∈ A, ∀o ∈ O. (2.32)

Therefore, the flow of link (i, j) xij is:

xij = ∑o∈O po
ijqo = ∑o∈O (Po(i)p(j|i)∑d∈D qod) ∀(i, j) ∈ A. (2.33)

where qod is the OD flow and qo is the total flow that departs from the origin o.

2.2.3 Proof of equivalence to the logit model

In MCA of Sasaki, 1965, it is difficult to define the transition probabilities, and they
have been assumed to be estimated based on observed link flows. In that case, MCA
does not based on any behavioral mechanism. Akamatsu, 1996 is the first to give
MCA the behavioral interpretation theoretically by proving that MCA is equivalent
to the Logit-type assignment model.

Proof. Akamatsu, 1996 defines the transition probability from nodes i to j p(j|i) as
follows:

pd(j|i) ≡ exp[−µ(cij + φjd − φid)] = exp(−µcij)
vjd

vid
∀(i, j) ∈ A, ∀d ∈ D. (2.34)
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where,

vid ≡ ∑r∈Rid exp(−µcid
r ) ∀i ∈ N , ∀d ∈ D, (2.35)

φid ≡ − 1
µ log ∑r∈Rid exp(−µcid

r ) = − 1
µ log vid ∀i ∈ N , ∀d ∈ D, (2.36)

µ is the scale parameter of i.i.d. extreme value type I, cij is the cost of link (i, j), and
cid

r is the cost of route r from nodes i to d. In MCA, a path is a sequence of nodes;
therefore, the path choice probability is formulated as the product of transition prob-
abilities as follows:

Pod
r = ∏

(i,j)∈r
p(j|i) ∀r ∈ Rod, ∀o ∈ O, ∀d ∈ D, (2.37)

where Pod
r is the probability that one chooses the route r in order to travel from nodes

o to d. By substituting Equation (2.34) and (2.35), Equation (2.50) can be re-expressed
as follows:

Pod
r = ∏

ij∈r
exp(−µcij)

vjd

vid

= exp(∑
ij∈r

−µcij) · exp(∑
ij∈r

log
vjd

vid
)

= exp(−µcod
r ) · exp(log vdd − log vod)

=
exp(−µcod

r )

∑r∈Rod exp(−µcod
r )

(2.38)

where cod
r is the cost of route r that travels from nodes o to d. This is the formulation

of multinomial logit model. ■

Note that we have to calculate vid by solving Equation (2.35) in order to eval-
uate the transition probabilities; however, since the equation contains the sum of
variables related to infinite paths, it is impossible to calculate it naively. Bell, 1995
and Akamatsu, 1996 proposed efficient methods for the evaluation, and Akamatsu,
1996’s method is described here as follows. Consider a matrix W (n× n) with entries

wij =

{
exp(−µcij), (i, j) ∈ A,

1, otherwise.
(2.39)

Based on this matrix, the element of the matrix Wm (n × n) is given as follows:

w[m]
ij = ∑

k∈Kij
m

exp(−µcij
k,m) (2.40)

where Kij
m is the set of paths that connect nodes i and j by passing through m links

and cij
k,m is the cost of the k-th path belonging to Kij

m. Therefore, the matrix V (n × n),

which has entries vi j = ∑r∈Rij exp(−µcij
r ), is given as

V = W + W2 + W3 + · · · = (I − W)−1 − I. (2.41)

If the matrix W is a convergence matrix, Equation (2.41) has the solution and the
transition probabilities in Equation (2.34) can be evaluated.
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2.2.4 Stochastic user equilibrium based on Markovian model

The Markovian models are based on link choice probabilities p(j|i), while the tradi-
tional traffic assignment models deal with path choice probabilities. One of the most
popular frameworks for the stochastic traffic assignment is Fisk’s formulation (Fisk,
1980), which is the optimization model equivalent to the Logit-type stochastic user
equilibrium of Daganzo and Sheffi, 1977, and it is formulated as follows:

min .Z(x(f)) = ∑
a∈A

∫ xa

0
ta(ω)dω − 1

µ ∑
o∈O

∑
d∈D

HP(fod), (2.42)

where,

HP(fod) = − ∑
r∈Rod

f od
r log

f od
r

qod
(2.43)

subject to,

xa = ∑o∈O ∑d∈D ∑r∈Rod δod
a,r f od

r , ∀a ∈ A, (2.44)

∑r∈Rod f od
r = qod, ∀o ∈ O, ∀d ∈ D, (2.45)

f od
r ,≥ 0 ∀o ∈ O, ∀d ∈ D, ∀r ∈ Rod, (2.46)

xa ≥ 0, ∀a ∈ A. (2.47)

This is a formulation that adds the entropy term to the Beckman’s formulation Beck-
mann, McGuire, and Winsten, 1956. As seen in Equation (2.42), the entropy term is
calculated based on the path flows. Akamatsu, 1997 proposed a method of decom-
posing the entropy term into the function defined by link flows, which is consistent
with the Logit-type Markovian route choice models, such as Dial, 1971 and Aka-
matsu, 1996. The entropy function based on link flows is developed as follows. The
relationship between path probabilities and path flows is

Pod
r =

f od
r

qod
, ∀o ∈ O, ∀d ∈ D, ∀r ∈ Rod, (2.48)

and that between path flows and link flows is

xod
ij = ∑

r∈Rod

f od
r , ∀o ∈ O, ∀d ∈ D, ∀(i, j) ∈ A. (2.49)

Moreover, the path choice probabilities that satisfy the Markov property can be de-
composed into the link choice probabilities p(j|i),

Pod
r = ∏

ij∈A
pod(j|i)δod

ij,r ∀o ∈ O, ∀d ∈ D, ∀r ∈ R. (2.50)

where,

pod(j|i) =
xod

ij

∑h xod
hj

∀o ∈ O, ∀d ∈ D, ∀(i, j) ∈ A. (2.51)
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Using these relationships, the entropy term HP(fod), which is defined by the path
flow in Equation (2.42), can be decomposed into as follows:

HP(fod) = − ∑
r∈Rod

f od
r log

f od
r

qod

= − ∑
r∈Rod

f od
r log Pod

r

= − ∑
r∈Rod

f od
r log

[
∏

ij∈A
p(j|i)δij,r

]
= − ∑

r∈Rod

f od
r ∑

ij∈A
δij,r log p(j|i)

= − ∑
ij∈A

(
∑

r∈Rod

f od
r δij,r

)
log p(j|i)

= − ∑
ij∈A

xod
ij log

xod
ij

∑h xod
hj

= − ∑
ij∈A

xod
ij log xod

ij + ∑
j

(
∑

i
xod

ij

)
log

(
∑

i
xod

ij

)
(2.52)

Furthermore, Akamatsu, 1997 showed that it can be replaced to a more compact
one, where the unknown variables are not the link flows by OD pair, xod, but the
link flows by origin, xo. As shown in Dial, 1971, the proportion of flows at each is
replaced as follows:

xod
ij

∑h xod
hj

=
xo

ij

∑h xo
hj

, ∀o ∈ O, ∀d ∈ D, i ̸= d (2.53)

where,

xo
ij = ∑

d∈D
xod

ij , ∀o ∈ O, ∀(i, j) ∈ A (2.54)

Using Equation (2.53) and (2.55), the entropy function can be replaced to one defined
by the link flows by origin,

∑
o∈O

∑
d∈D

HP(fod) = − ∑
o∈O

∑
d∈D

∑
ij∈A

xod
ij log

xod
ij

∑h xod
hj

= − ∑
o∈O

{
∑

ij∈A
xo

ij log
xo

ij

∑h xo
hj

}

= − ∑
o∈O

{
∑

ij∈A
xo

ij log xo
ij + ∑

j

(
∑

i
xod

ij

)
log

(
∑

i
xo

ij

)}
.(2.55)

Therefore, the SUE formulation (Equation 2.42) can be replaced into one defined by
only the link flows as follows:

min .Z(x) = ∑
a∈A

∫ xij

0
tij(ω)dω − 1

µ ∑
o∈O

{HL(xo)− HN(xo)} , (2.56)
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where,

HL(xo) ≡ − ∑
ij∈A

xo
ij log xo

ij (2.57)

HN(xo) ≡ −∑
j

(
∑

i
xod

ij

)
log

(
∑

i
xo

ij

)
(2.58)

subject to,

∑h xo
hi − ∑j xij + ∑d qodδoi − qodδdi = 0 ∀o ∈ O, ∀i ∈ N , (2.59)

xij = ∑o∈O xo
ij, ∀(i, j) ∈ A, (2.60)

xo
ij ≥ 0, ∀o ∈ O, ∀(i, j) ∈ A. (2.61)

In the same way, the entropy function with only the link flows by destination, xd,
can be defined. This work has been extended to the formulation with state specific
scale parameters in Baillon and Cominetti, 2008.

2.2.5 Sequential link choice model

As seen in Equation (2.36), φid is the expected minimum cost from nodes i to d when
the error term of link costs is i.i.d. extreme value type I with the scale parameter µ.
Therefore, φ is formulated as the dynamic programming (Bellman, 1957):

φid = E

[
min
j∈N+

i

(c̃ij + φjd)

]
∀i ∈ N , ∀d ∈ D. (2.62)

where,

c̃ij ≡ cij + ε ij ∀(i, j) ∈ A, (2.63)

N+
i is the set of nodes that is directly connected with node i by a link, and ε ij is the

error term of the link cost and i.i.d. extreme value type I. Gentile and Papola, 2006
and Baillon and Cominetti, 2008 clearly mentioned that route choice is not an issue
to be solved once and for all at the origin of each trip, but instead it is considered as
the outcome of sequential choices of links at every intermediate node. In the case of a
logit Markovian model, the expected minimum cost in Equation (2.62) is formulated
as a logsum:

φid = − 1
µid

log ∑
j∈N+

i

exp[−µid(cij + φjd)] ∀i ∈ N , ∀d ∈ D, (2.64)

where µid is the state-specific scale parameter in general discrete choice schemes
(Gentile and Papola, 2006; Baillon and Cominetti, 2008). It is equivalent to Equation
(2.36) when µid = µ, ∀i ∈ N . In that case, the transition probability from nodes i to j
is given as follows:

pd(j|i) = ∂φid

∂cij
(c) =

exp[−µid(cij + φjd)]

∑j′∈N+
i

exp[−µid(cij′ + φj′d)]
∀(i, j) ∈ A, ∀d ∈ D, (2.65)

where the fact that the change rate of the expected minimum cost to each cost cor-
responds to the choice probability is proved in e.g., Baillon and Cominetti, 2008.
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Equation (2.65) is a well-known multinomial logit model; therefore, we can get the
interpretation of the transition probability as the choice probability of a link at each
node. It indicates that a traveler at node i chooses a link (i, j) that minimizes the sum
of the link cost cij and the expected minimum cost from the sink node of the link j to
the destination node d, φjd.

2.2.6 Description of correlation structures

The logit-type route choice models suffer from the IIA (Independence from Irrelevant
Alternatives) property of the logit model and can assign excessive probabilities to
paths that overlap each other. Daganzo and Sheffi, 1977 proposed a probit-based
network loading algorithm without the path enumeration to solve the overlapping
problem, but it requires heavy computational burden and the application to break
networks is difficult. On the other hand, in recent, a route choice model that is based
on the network-GEV model (Bierlaire, 2002; Daly and Bierlaire, 2006) have been pro-
posed by Papola and Marzano, 2013, Hara and Akamatsu, 2014, and Mai, 2016. Ma
and Fukuda, 2015 applied the model to a hyperpath-based model to analyze route
choice behavior under uncertainties. The network-GEV based route choice model
can consider the correlation structure among paths without enumerating paths, by
assuming the structure of a road network as that of a GEV network, where an inter-
section corresponds to a state node.

The network-GEV based route choice model is developed as follows. Daly and
Bierlaire, 2006 showed that the GEV network, which is proposed in the paper and
represents the correlation structure among alternatives, can always generate RUM-
based discrete choice models if the network satisfies that 1) it has a unique root and
2) has no cyclic structure in it. In the GEV network (S , E), where S is the set of
nodes and E is the set of arcs, every node i has the specific GEV function Gi. The
relationship between the GEV function of node i Gi and that of the successive node
j Gj is described as follows:

Gi(y) = ∑
j∈Si

αjiGj(y)µi/µj , (2.66)

and the choice probability of node j conditional on node i is

p(j|i) =
αjiGj(y)µi/µj

∑j′∈Si
αj′iGj(y)µi/µj′

, (2.67)

where Si is the set of the successive nodes of node i, the allocation parameter αji and
the scale parameter µi are strictly positive. In the GEV network, the set of nodes
with no successor represents the choice set C and all other nodes represent nests.
The expected maximum utility corresponding to each Gi is given as:

Ūi = E

[
max
r∈C

(uk + εi
r −

γ

µi
)

]
=

∫ ∞

−∞
max
r∈C

(uk + εi
r −

γ

µi
) f (ε)dε

=
log Gi(y)

µi
, (2.68)
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where γ is the Euler’s constant and the error utility component εi
r follows the dis-

tribution F(εi
1, ..., εi

r) = exp[−Gi(exp(−εi
1), ..., exp(εi

r))]. Using Equation (2.67), the
relationship between the expected maximum utility of node i Ūi and that of its suc-
cessive node j Ūj is expressed as a recursive form:

Ūi =

{
1
µi

log ∑j∈Si
αjieµiŪj ∀i ̸∈ C

0 ∀i ∈ C
(2.69)

More detailed development of the formulas is seen in McFadden, 1978 and Daly and
Bierlaire, 2006.

Hara and Akamatsu, 2014 uses the GEV network to describe the sequential link
choice behavior in a road network. In the context of route choice model, each inter-
mediate arc (i, j) ∈ E has the attribute corresponding to the link cost −cij; therefore,
the expected maximum utility is defined as link specific value as follows:

Ūij = −(cij + φd
j ), (2.70)

where φd
j is the expected minimum cost from node j to the destination. Also, the

choice probability of node j conditional on node i is:

p(j|i) =
αjiGij(y)µi/µj

∑j′∈Si
αj′iGij(y)µi/µj′

=
αji exp[−µi(cij + φd

j )]

∑j′∈Si
αj′i exp[−µi(cij′ + φd

j′)]
, (2.71)

where

Gij(y) = exp(µjŪij) (2.72)

The probability of path r = [i0, ..., iJ ] is given as the product of the link choice proba-
bilities. The relationship between the expected minimum cost of node i φd

i and that
of its successive node j φd

j is expressed using Equation (2.69),

φd
i =

1
µi

log ∑
j∈Si

αjieµiŪij

=
1
µi

log ∑
j∈Si

αji exp[−µi(cij + φd
j )]. (2.73)

In the case that µi = µ, ∀i ∈ S and αji = 1, ∀(i, j) ∈ E , the expected minimum utility
from the origin o to the destination d is

φd
o =

1
µ

log ∑
r∈Rod

exp

(
−µ ∑

ij∈r
cij

)
=

1
µ

log ∑
r∈Rod

exp(−µcr). (2.74)

This corresponds to the well-known expected minimum cost of the logit-type Marko-
vian route choice model. For this reason, the network-GEV based route choice model
can be considered as a generalized form of the Markovian route choice model.
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2.2.7 Recursive logit model

Fosgerau, Frejinger, and Karlstrom, 2013 is the first to deal with the sequential link
choice model in the context of economic discrete choice models, based on a dynamic
discrete choice model (Rust, 1987). We first review the dynamic discrete choice
model (DDCM), and we then present the formulation of the recursive logit (RL)
model proposed by Fosgerau, Frejinger, and Karlstrom, 2013.

Rust, 1987 proposed a DDCM, which is also referred to as dynamic programming
conditional logit model. Aguirregabiria and Mira, 2010 presented a comprehensive
review of DDCMs. In DDCMs, an individual at every time period t observes the vec-
tor of state variables st and chooses the alternative at that maximizes the discounted
expected utility (Samuelson, 1937):

E

(
T

∑
j=t

βj−tũ(aj, sj)|at, st

)
, (2.75)

where β ∈ (0, 1) is the discount factor and ũ(at, st) is the utility function at period
t. T is the terminal period of the decisions. This is the dynamic programming (DP)
problem of the individual. By the Bellman’s principle of optimality (Bellman, 1957),
the value function can be expressed as the recursive expression:

V(st) = max
a∈C

{
ũ(a, st) + β

∫
V(st+1)dF(st+1|a, st)

}
, (2.76)

where F(st+1|at, st) is a Markov transition distribution function that represents the
individual’s beliefs about future states. The optimal decision rule α(st) is then:

α(st) = arg max
a∈C

{v(a, st)}, (2.77)

where

v(a, st) ≡ ũ(a, st) + β
∫

V(st+1)dF(st+1|a, st) ∀a ∈ C (2.78)

is a choice-specific value functions. This DP problem can be by starting determining
the value function at the terminal period T V(sT) and calculating Equation (2.76)
in descending order. However, the procedure includes a number of maximization
problems and it is computationally very expensive.

Rust, 1987 defined six assumptions to solve the problem more easily: AS (Ad-
ditive Separability), IID (iid Unobservables), CI-X (Conditional Independence of Future x),
CI-Y (Conditional Independence of y), CLOGIT, and DIS (Discrete Support of x) (see Rust,
1987; Aguirregabiria and Mira, 2010, for more detail). By these assumptions, the
choice-specific value function is:

v(a, st) = u(a, xt) + εt(a) + β
∫ ∫

V(xt+1, εt+1)dGε(εt+1)dFx(xt+1|at, xt), (2.79)

where the state variables and the utility functions are distinguished into two subsets,
st = (xt, εt) and, ũ(a, xt, εt) = u(a, xt) + εt(a), respectively. By the assumption IID
and CI-X, F(st+1|a, st) can be decomposed as F(xt+1, εt+1|a, xt, εt) = Gε(εt+1)Fx(xt+1|at, xt),
where Gε(εt+1) is the CDF of the iid distributed unobserved value εt+1 and Fx(xt+1|at, xt)
is the distribution function conditional on the current decision and observed state
variables. By defining the integrated value function V̄(xt) =

∫
V(xt, εt)dGε(εt)
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and assuming that the state space X is discrete and finite, Equation (2.79) can be
re-defined as:

v(a, st) = v(a, xt) + εt(a) (2.80)

where

v(a, xt) = u(a, xt) + β ∑
xt+1

V̄(xt+1)Fx(xt+1|at, xt). (2.81)

Moreover, by the assumption CLOGIT, this can be expressed as DP conditional logit
model with the Bellman equation

V̄(xt) = log

[
∑
a∈C

exp

{
u(a, xt) + β ∑

xt+1

V̄(xt+1)Fx(xt+1|at, xt)

}]
, (2.82)

and choice probabilities:

P(a|xt) =
exp{v(a, xt)}

∑a′∈C exp{v(a′, xt)}
. (2.83)

This is similar to the static multinomial logit model, and it has contributed to the
extensive development of DDCMs. A review of the applications of DDCMs in trans-
portation studies are presented by Cirillo and Xu, 2011.

Fosgerau, Frejinger, and Karlstrom, 2013 proposed the recursive logit model as
a network route choice model with unrestricted choice set, using the DDCM frame-
work above. In the RL model, the route choice model is assumed as a utility-based
and link-based one, while the above discussion is cost-based and node-based. At
each current link k, a traveler chooses the next link a from the set of outgoing links
A(k). An instantaneous utility ũ(a|k) = u(a|k)+ ε(a), where the random utility term
ε(a) is i.i.d. extreme value type I with the scale parameter µ, is associated with each
link in the choice set A(k) conditional on current link k. In the context of sequential
route choice models, the decision a corresponds to the state at the next period. More-
over, the state variables are link-specific and deterministic. Travelers are assumed to
know the link utilities over the network deterministically; therefore, the discount
factor β equals one and Equation (2.76) can be expressed as:

Vd(k) = E

[
max

a∈A(k)
(ũ(a|k) + Vd(a))

]
∀k ∈ A, (2.84)

where d is a dummy link for a destination that has no successors, and Ã = A ∪ d.
This corresponds to the expected maximum utility from links k to d. Also, based on
Equation (2.81)-(2.83), the link choice probability can be formulated as

pd(a|k) = exp[µ{u(a|k) + Vd(a)}]
∑a′∈A(k) exp[µ{u(a′|k) + Vd(a′)}] ∀k, a ∈ A, (2.85)

and the value function is formulated as a logsum:

Vd(k) =

{
1
µ log ∑a∈A δ(a|k) exp[µ{u(a|k) + Vd(a)}], ∀k ∈ A,

0, k = d.
(2.86)
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where an indicator δ(a|k) is equal to one if a ∈ A(k) and zero otherwise. Since d
has no successive state, Vd(d) equals to zero. This corresponds to Equation (2.64),
which is the expected maximum utility in the DP framework. Equation (2.86) is
transformed by multiplying µ and taking the exponential:

eµVd(k) =

{
∑a∈A δ(a|k)eµ{u(a|k)+Vd(a)}, ∀k ∈ A,

1, k = d.
(2.87)

which is corresponding to v in Equation (2.35) and (2.36) in Akamatsu, 1996. Using
the matrix forms: M (|Ã| × |Ã|) with entries δ(a|k)eµu(a|k), which is the incidence
matrix defining instantaneous utilities, zd (|Ã| × 1) with entries zd

k = eµVd(k), and bd

(|Ã| × 1) with entries bk = 0 if k ̸= d, and bd = 1, Equation (2.87) can be written as a
system of linear equations:

zd = Mzd + bd ⇔ (I − M)zd = bd (2.88)

which has the solution if the matrix M is a convergence matrix. The main differ-
ence of Fosgerau, Frejinger, and Karlstrom, 2013 from previous route choice models
based on Markovian model is that the deterministic component of instantaneous
utility is expressed as un(a|k) = u(xn,a|k; θ), where xn,a|k is a vector of observed char-
acteristics of the link pair (k, a) that may include characteristics of traveler n and θ
is an unknown parameter vector to be estimated by maximum likelihood. The log
likelihood function defined for observations n = 1, ..., N is:

LL(θ) = log
N

∏
n=1

P(rn) = µ
N

∑
n=1

In−1

∑
i=0

un(ki+1|ki; θ)− V(k0) (2.89)

where the choice probability of path rn = [k0, ..., k In ] is the product of link choice
probabilities. The log likelihood function is maximized using structural estimation
method, such as the nested fixed point (NFXP) algorithm (Rust, 1987) and the nested
pseudo likelihood (NPL) algorithm (Aguirregabiria and Mira, 2002), which consist
of two steps: the non-linear optimization to search over the parameter space and the
evaluation of the system of linear Equation (2.88).

Mai, Fosgerau, and Frejinger, 2015 and Mai, 2016 has extended the RL model
to the nested RL (NRL) model and the generalized RL (GRL) model, which are the
framework for considering the correlation structure among paths based on the RL
model, respectively. In Mai, Fosgerau, and Frejinger, 2015, the scale parameter of the
error term distributions of the instantaneous utility is assumed to be link-specific µk,
and Equation (2.87) is re-formulated as

eµkVd(k) =

{
∑a∈A δ(a|k)eµk{u(a|k)+Vd(a)}, ∀k ∈ A,

1, k = d.
(2.90)

In the same way with Fosgerau, Frejinger, and Karlstrom, 2013, this is replaces by
the matrix expression defining the matrix M and zd:

zd
k =

{
∑a∈A Md

ka(z
d
a)

µk/µa , ∀k ∈ A,
1, k = d,

(2.91)
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then

zd = MX(zd) + bd (2.92)

where X(zd) is a matrix of size |Ã| × |Ã| with entries X(z)kad = (zd
a)

µk/µa . This is a
system of non-linear equations, and it is solved by a value iteration approach. Mai,
2016 proposed a generalized recursive logit (GRL) model, which describes correla-
tion structures among path alternatives integrally, based on the network-GEV model
(Daly and Bierlaire, 2006) similarly to the method shown in Section 2.2.6. More-
over, Mai, Frejinger, and Bastin, 2015 proposed a dynamic programming approach
to quickly solve the large scale network models with correlation structures.

2.3 Discussion

2.3.1 Biases in estimating route choice models

We discussed the estimation methods of route choice models using GPS data in Sec-
tion 2.1.5 and 2.1.7. For observing route choices, passive monitoring with the GPS
technology is used; however, it is required to match the data format to transporta-
tion networks and to deal with the measurement errors. As mentioned in Section
2.1.5, in the case that the measurement uncertainty is large, bayesian approaches are
used, which incorporate route choice models as the prior to correct the measurement
probabilities. In bayesian approaches, the parameters of the route choice model that
is used as the prior are required to be given. These parameters that are given by
the modeler are not consistent with those that are estimated in route choice models.
As the results, the parameter estimation, which is the objective of discrete choice
analysis, can be biased.

In the framework of the joint estimation of Bierlaire and Frejinger, 2008, the def-
inition of the set of path candidates is required, and for this purpose, the concept
of DDR is used. For defining the DDRs, the variance of GPS measurement error σ
should be given and often regarded as the constant value over the network. How-
ever, it is assumed that the localization errors largely depends on spacial attributes
on which travelers move, especially in pedestrian networks. The probability that
is evaluated by the measurement equation with given σ can be biased. Figure 2.3
shows the measurement probabilities with different variances, which are often as-
sumed to be a Rayleigh distribution here as:

p(x̂|x; σ) =
∥x̂ − x∥

σ
exp

(
∥x̂ − x∥2

2σs

)
, (2.93)

where measurement probability p(x̂|x; σ) is the probability that measurement x̂ is
observed if x is the true location. The figure shows that the measurement proba-
bilities are largely dependent on the value of the variance, that is, the error of the
variance parameter can cause biases in evaluating the measurement probabilities.
Also, as the result, the estimated parameters of the route choice model can also be
biased.

The above discussion demonstrates that previous frameworks for estimating route
choice models using uncertain measurements, such as GPS data, often result in bi-
ased parameters due to the initial parameter settings of both the measurement model
and the prior information. We show the illustration of the process in Figure 2.4,
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FIGURE 2.4: Biases in estimation process of route choice models

where solid lines indicate the unbiased inputs and dash lines denote the biased in-
puts or outputs. In bayesian approaches shown in Figure 2.4(a), the parameters θ̄
of route choice preferences have to be given to calculate the route choice probability
p(r|R; θ) of the prior, while the modeler cannot know the true preferences of route
choices. Therefore, the biases included in the initial parameters are retained into the
inferred routes r̃, and also into the estimated parameters θ̃. In the joint estimation
method of Bierlaire and Frejinger, 2008, which is shown in Figure 2.4(b), the assump-
tion of the variance σ̄ is required to define the set of path candidates. The value of
the variance is assumed as the constant value over a network; however, in the case
that the variances have spatial dependence, the measurement probabilities p(m̂|r; σ)
can be biased, and as the result, the estimated parameters θ̃ are biased. For this rea-
son, a new method for reducing the biases is needed, especially in the case of high
resolution networks, such as pedestrian networks.

2.3.2 Computational property of Markovian route choice models

In this section, we point out a challenge of Markovian route choice models using
the example networks of Figure 2.5. The number associated with each link is link
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cost cij, which is the only attribute of utilities, and the link utility is uij = θcij, where
θ = −1.5. For the path-based MNL model and the PSL model, the choice set includes
3 paths: [o1, 12, 23, 3d] (path 1), [o1, 12, 24, 43, 3d] (path 2), and [o1, 13, 3d] (path
3). In Markovian model, which is referred to as the RL model in this section, the
universal set is considered. Table 2.1, 2.2 and 2.3 show the choice probabilities of the
three paths given by the path-based MNL model, the PSL model with θPS = 2.5, the
RL model, and the RL model with the link size attributes and θLS = −0.75 in network
(a), (b), and (c) of Figure 2.5, respectively. We denote the three path probabilities as
P1, P2, and P3, respectively. As is seen in Table 2.1, in network (a), which has no
cyclic structure, the path probabilities given by the MNL model and the RL model
are equivalent to each other: P1 = P2 = P3 = 0.333, because the universal set is
path 1, 2 and 3 in the case of network (a). As mentioned in Section 2.2.3, the path
probabilities given by the logit-type Markovian route choice model is consistent with
that of the path-based MNL model with the universal choice set. The RL model can
also consider the overlapping effect of paths by incorporating the link size attributes
into the model. The tables show that the RL model with link size attributes output
the values of the path probabilities close to those given by the PSL model, which is
one of the most popular models for considering the overlapping effects.

In network (a), the total value of the path probabilities given by every model
is equivalent to one; however, in network (b) and (c), the total value is lower than
one, because the probabilities are assigned to the cyclic paths. In the case of the RL
model in network (b) and (c), probability 0.050 and 0.214 are assigned to the cyclic
paths, respectively. This assignment of probabilities to cyclic paths causes a problem
for solving the Bellman equation. Consider the incident matrix W defining the link
utilities, and the logit-type Markovian model has to satisfy the following inequality
to solve the expected minimum cost:

ρ(W) ≡ max
h

{|λh|} < 1, (2.94)

where λh is the h-th eigenvalue of the matrix W and ρ(W) is the spectral radius,
which is the maximum absolute value of the eigenvalues of W. Equation (2.94) is
then the necessary and sufficient condition for the matrix Wm to converge as m →
+∞. When the network has no cyclic structure as network (a), ρ(W) is always zero
and satisfies Equation (2.94), theoretically. However, when the network has cyclic
structures, it depends on the balance between the number of paths that connect the
nodes in the network and the size of the link utilities.

We investigate this conditions using network (c), which has two cyclic structures:
[12, 24, 41] and [24, 42]. We change the coefficient of the link cost in the link utility
function, θ, and report the change of the spectral radius, ρ(W) in Table 2.4. The
ρ(W) values that are larger than one indicate that the matrix W is not a convergence
matrix and (I − W) is not invertible. Table 2.4 shows that in the case of network (c),
the maximum expected utilities diverge and the Bellman equation cannot be solved
when θ is larger and equal to −0.4. That is, we cannot solve the path probabilities of
the Markovian route choice models when the link utilities are large and the network
has cyclic structures.

In Fosgerau, Frejinger, and Karlstrom, 2013, the link utilities are defined to be
always lower than zero, and a fixed large penalty to each u-turn is introduced so that
their probability is close to zero. However, the computational stability is retained in
the parameter estimation process, because the values of coefficients fluctuate and
the spectral radius can be larger or equal to one in the process. Moreover, the setting
that the utilities are always negative do not allow one to introduce variables that can
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FIGURE 2.5: Example networks

have positive effects to the utilities, such as the number of lanes, the attractiveness
of shops along the road, the width of sidewalk, and so on.
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TABLE 2.1: Path probabilities in network (a)

Path MNL PSL RL RLwithLS
1:[o1,12,23,3d] 0.333 0.294 0.333 0.292
2:[o1,12,24,43,3d] 0.333 0.294 0.333 0.227
3:[o1,13,3d] 0.333 0.411 0.333 0.481
total 1 1 1 1

TABLE 2.2: Path probabilities in network (b)

Path MNL PSL RL RLwithLS
1:[o1,12,23,3d] 0.333 0.294 0.317 0.283
2:[o1,12,24,43,3d] 0.333 0.294 0.317 0.212
3:[o1,13,3d] 0.333 0.411 0.317 0.485
total 1 1 0.950 0.979

TABLE 2.3: Path probabilities in network (c)

Path MNL PSL RL RLwithLS
1:[o1,12,23,3d] 0.333 0.294 0.262 0.262
2:[o1,12,24,43,3d] 0.333 0.294 0.262 0.161
3:[o1,13,3d] 0.333 0.411 0.262 0.504
total 1 1 0.786 0.927

TABLE 2.4: Spectral radius of the incident matrix W in network (c)

θ -1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8
ρ(W) 0.559 0.591 0.626 0.662 0.701 0.742 0.785 0.832

θ -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
ρ(W) 0.881 0.934 0.989 1.048 1.111 1.178 1.249 1.325
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Chapter 3

Structural estimation for route
choice models under measurement
uncertainties

In this chapter, we propose an estimation method for obtaining parameters of route
choice models without biases dependent on parameter settings, using GPS data with
measurement uncertainties.

Passive monitoring with the Global Positioning System (GPS) is increasingly
used to observe trip data because it contributes to facilitating the automatic observa-
tion of trip data. However, data from monitoring with GPS includes measurement
errors that are dependent on device, network description, and spatial attributes. The
errors result in a biased observation of route choices, and therefore, the parameter
estimation results of route choice models are biased. In this study, we propose a
link-based route measurement model that is based on a Bayesian approach and in-
corporates a link-based route choice model as the prior. It allows the inference of
links based on both measurements and behavioral mechanisms, and to simultane-
ously estimate the variance of GPS measurement error on each link. Additionally,
we propose a structural estimation method for route choice models to remove biases
with respect to the initial parameter settings. The performance of the framework is
examined through a numerical example and a case study involving a real pedestrian
network. As a result, the estimated preferences of route choices using the structural
estimation method are less biased and show the different trend from those using
the biased route choice observations. Also, the estimated variances of GPS measure-
ment errors are realistic.

Keywords: Route choice model, Route choice observation, GPS data, Structural esti-
mation, Sequential link measurement, map matching
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3.1 Introduction

Observations corresponding to models are required to estimate the parameters of
discrete choice models. In the context of route choice model, we need the informa-
tion of paths that are sequences of links connecting between the origin-destination
pairs. Conventionally, mail and telephone surveys were conducted to ask travelers
as to which routes were taken. However, it is difficult to assume that many travelers
correctly state their routes. Conversely, passive monitoring with the Global Posi-
tioning System (GPS) is currently used to automatically observe trip data. Probe
cars and connected vehicles contribute to obtaining real-time trip data, and recently
emerging monitoring technologies allow the observation of trajectories of vehicles
as well as pedestrians in districts (Hato, 2010; Kasemsuppakorn and Karimi, 2013;
Asakura, Hato, and Maruyama, 2014; Shafique, Hato, and Yaginuma, 2014).

It is increasingly important to understand pedestrian route choice behavior in
districts as a solution for recent problems involving urban and transportation plan-
ning (Scarinci, Markov, and Bierlaire, 2017) and human health (Borst et al., 2008).
Several studies report that pedestrian route choice behavior exhibits preferences
different from other means of transport (Timmermans, Hagen, and Borgers, 1992;
Kurose, Borgers, and Timmermans, 2001). Also, pedestrian behavior is described as
a series of decisions and activities (Borgers and Timmermans, 1986a). While these
characteristics of pedestrian behavior have been studied in microscopic scale, such
as in transportation hubs (Hoogendoorn and Bovy, 2004), the behavior has not been
sufficiently investigated at the urban network level such as in shopping streets and
city center districts. This problem depends on data collection. At the microscopic
scale, various sensors or video tracking are used to follow trajectories. On the other
hand, in urban networks, this type of monitoring is typically not applicable, and it
is difficult to observe the complicated series of behavior by questionnaire surveys.
Although trajectory monitoring using mobile instruments is currently under devel-
opment (Danalet, Farooq, and Bierlaire, 2014; Shafique, Hato, and Yaginuma, 2014;
Danalet et al., 2016), there is a paucity of studies examining the method for detecting
route choices in urban pedestrian networks.

Specifically, the observation accuracy of trajectory monitoring is continuously
improved. Nevertheless, high measurement uncertainties persist especially in pedes-
trian networks. First, pedestrian networks are often dense, and thus the number of
candidates of the true path corresponding a sequence of measurements increases.
Therefore, it is more difficult to identify the true state as opposed to networks of the
other transportation modes. Second, the spatial attributes of links are different from
each other and affect on measurement errors. For example, we can accurately ob-
serve trajectories on wide streets or streets along open spaces, while the observation
accuracy worsen on narrow streets or streets with arcades. That is, the variance of
the measurement error is heterogeneous in pedestrian networks.

Probabilistic route measurement models that explicitly consider the measure-
ment error and probabilistically identify routes are used to deal with the measure-
ment uncertainties. However, in the previous models, the variance of the measure-
ment error is assumed as a given and constant value over a network to define the
route candidate set (Bierlaire and Frejinger, 2008; Bierlaire, Chen, and Newman,
2013). This causes a trade-off problem between measurement accuracy and compu-
tational efficiency and also has the risk of inaccurate evaluation of the measurement
probabilities. If the route identification is uncertain, then the route choice model
that is estimated with the uncertain route information is consequently biased. Also,
Bayesian approaches that incorporate route choice models as the prior information
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(e.g., Danalet, Farooq, and Bierlaire, 2014; Chen and Bierlaire, 2015) remain a prob-
lem to correct the route measurement in the wrong direction in the case when the
incorporated model is not consistent with the finally estimated model.

Focusing on the mechanism of the increase in estimation biases that depends on
the relationship between route measurement and route choice models, this paper
proposes a novel framework for estimation with less biases. The study considers
and estimates the link-specific variance of measurement error, and this has been ig-
nored in extant studies as mentioned above. To do so, we introduce a link-based
route measurement model that is based on the assumption of sequential link choice
behavior. Furthermore, we propose an estimation method that ensures consistency
of route choice model with the route measurement model to remove the biases in-
cluded in the prior information of Bayesian approaches. The proposed framework is
examined through numerical examples, and it is shown that it converges to a point
close to the true value and is computationally efficient. We also apply the frame-
work to the real trajectory data of pedestrians in a city center. The analysis not only
shows realistic results in terms of estimation results of both the measurement er-
ror variance and route choice preference of pedestrians, but also reveals a hidden
behavioral mechanism under the measurement uncertainties.

The structure of this paper is as follows. In Section 3.2, we present a literature
review of estimation methods for route choice models with uncertain measurements.
In Section 3.3, we present a framework of this study and notations. In Section 3.4, we
introduce a link-based route measurement method and show how to estimate link-
specific variances. In Section 3.5, we propose a structural estimation method and
explain its algorithm. In Section 3.6, we examine the performance of our model in a
simulation analysis and a case study of applying the framework to a real pedestrian
network. Conclusions and discussion for future research directions are provided in
the end.

3.2 Literature review

In this section, we present a literature review of frameworks to estimate the parame-
ters of route choice models with uncertain measurement. We first introduce studies
on route measurement models that observe route choices with GPS data for route
choice models. We then review Bayesian approaches that incorporates behavioral
route choice information into route measurement models.

3.2.1 Route measurement models

Raw data from sensors is typically not useful for behavior analyses without the pre-
processing, because GPS location data is not consistent with network graphs in for-
mat and includes measurement errors that are dependent on the devices and spatial
contexts. Given these reasons, several methods have been proposed within the last
two decades to estimate behavioral states from the passive data.

Map matching algorithms

Map matching (MM) methods that involve the aim of matching GPS data to trans-
portation networks are typical techniques. MM algorithms are categorized into the
three following groups: geometric (e.g., White, Bernstein, and Kornhauser, 2000),
topological (e.g., Greenfeld, 2002; Quddus et al., 2003; Velaga, Quddus, and Bris-
tow, 2009), and probabilistic (e.g., Ochieng, Quddus, and Noland, 2003; Quddus,
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Ochieng, and Noland, 2006; Hunter, Abbeel, and Bayen, 2014). Quddus, Ochieng,
and Noland, 2007 comprehensively reviewed map matching methods presented
prior to the early 2000s. Most algorithms are based on sequential position infer-
ences where the true location is inferred for each location data in chronological or-
der, because the aim involves application to on-line navigation systems. However,
in transportation studies, researchers require the actual path as a sequence of links
rather than the on-line identification of the traveler locations (Bierlaire, Chen, and
Newman, 2013).

Probabilistic route measurement models

Conversely, Pyo, Shin, and Sung, 2001 and Bierlaire, Chen, and Newman, 2013 pro-
posed path-based and probabilistic route measurement models that evaluate the
likelihoods of path candidates with respect to all GPS data in a trip. Chen and
Bierlaire, 2015 presented a probabilistic route measurement model that includes the
transportation mode detection for route choice analysis in multi-modal networks.
However, in order to probabilistically evaluate path candidates, the set of paths to
which the probabilities are assigned should be defined. It is widely known that the
choice set definition of route choice models is challenging, and probabilistic route
measurement models involve the same problem.

Bierlaire and Frejinger, 2008 proposed the concept of domain of data relevance
(DDR) that indicates a region where each data is related, in order to generate the set
of path candidates for route measurement models. Based on the DDR concept, Bier-
laire and Frejinger, 2008 also proposed a framework to estimate route choice models
as the ambiguity of observations remains (Figure 3.1 a). In the case of GPS data,
links included in a DDR are assumed as candidates of the true state of each data,
and paths that include those links are considered in the path candidate set. Based on
the DDR concept, Bierlaire, Chen, and Newman, 2013 proposed a path generation
algorithm. Danalet, Farooq, and Bierlaire, 2014 applied it to Wi-Fi data to generate
candidate locations of activity episode for each measurement. The application of the
DDR concept involves, however, a trade-off problem between measurement accu-
racy and computational efficiency because the number of path candidates depends
on the size of DDRs. Furthermore, it is required to give the probability distribution
of the measurement error in advance to define a DDR, and this can cause the bias on
evaluation of the route measurement probabilities.

Bayesian approaches

Recently, a few studies proposed advanced methods based on Bayesian approaches
(e.g., Danalet, Farooq, and Bierlaire, 2014; Chen and Bierlaire, 2015). Bayesian ap-
proaches in the context of route choice analysis correct the route measurement prob-
abilities by incorporating the prior information of the route choice probabilities given
by route choice models. When localization is weak and a network is dense, the dif-
ference among route measurement probabilities is not significantly high and it is typ-
ically not possible to obtain information enough to identify routes (Danalet, Farooq,
and Bierlaire, 2014). Especially in such cases with large measurement uncertainties,
Bayesian approaches that correct for the measurement probabilities based on behav-
ioral information are helpful. However, when the prior (i.e., the parameters of route
choice model) is uncertain, the results of route identification of a Bayesian approach
can be worse than that without the prior. The estimated parameters of route choice
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model are theoretically biased unless the route choice model of the prior is consistent
with one that is finally estimated by using the identified route information.

3.2.2 Biases in estimation process

As mentioned above, probabilistic route measurement models are mainly used in re-
cent years to estimate route choice models with uncertain measurement. This study
focuses on the effect of initial parameter settings of these types of models on the es-
timation process of the route choice model. To discuss it, we let r denote a route and
let R denote the route set that travelers consider. p(m̂|r; σ) is the route measurement
model that yields the probability that data m̂ is observed if r is the actual path, where
σ is the measurement parameter. p(r|R; θ) is the route choice model that gives the
probability that path r is selected within the choice set R, where θ is the unknown
parameters to be estimated. Hats (ˆ), bars (¯) and tildes (˜) over symbols respectively
indicate observed, given (initial) and estimated values.

First, a path-based probabilistic measurement model requires the definition of
path candidate set. As discussed above, the DDR concept is used for this purpose
(Bierlaire and Frejinger, 2008), and the variance of measurement error σ should be
given in advance to define the DDR of each location data. In previous works, the
variance is often considered as a constant value over the network (Bierlaire, Chen,
and Newman, 2013; Danalet, Farooq, and Bierlaire, 2014; Chen and Bierlaire, 2015).
Given that σ defines the probability distribution of the measurement error, the eval-
uation of the route measurement probabilities is biased when the given value of σ is
significantly different from the true value. Also, the number of path candidates, i.e.,
the definition of R depends on the size of DDR. This indicates the possibility that the
true path is not included in the path candidate set. Thus, the arbitrary setting of the
parameter of route measurement model causes the bias in the estimation result of
route choice model (Figure 3.1 b). This is assumed as a critical issue in urban pedes-
trian networks. Such networks are often dense, and the number of path candidates
to consider is large compared to road networks even if the size of measurement error
is same. For the sake of computational efficiency, we need to define smaller DDRs,
and this means the higher risk of ignoring the true path. Also in urban pedestrian
networks, localization errors can largely depend on spatial attributes, such as width
of a street and height of buildings along a street. A constant value of σ over a net-
work thus causes the biases in the evaluation of measurement probabilities.

Second, the Bayesian approach corrects for the measurement probability by us-
ing prior information. In the context of route choice analysis, the prior is assumed
as the parameter of route choice model θ that represents route choice preference
of travelers Chen and Bierlaire, 2015. This parameter is supposed to be finally es-
timated by using route choice data observed through route measurement model,
namely, it is not possible to obtain its true value in advance. In previous studies,
θ is defined as, e.g., estimated parameters from historical or external data sources
(Chen and Bierlaire, 2015), arbitrarily given (Danalet, Farooq, and Bierlaire, 2014),
and assumed as uniformly distributed if no information is available (Chen and Bier-
laire, 2015; Hunter, Abbeel, and Bayen, 2014). However, when the prior is uncertain,
the results of route identification can be worse rather than the case without prior
information, and subsequently the final parameter estimation result of route choice
model is worse. This theoretically implies that the estimated parameters are biased
unless the route choice model of the prior is consistent with one that is finally esti-
mated by using the identified route information (Figure 3.1 a).
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FIGURE 3.1: Biases in parameter estimation process of route choice
model.

To summarize, the existing frameworks to estimate route choice models with
measurement uncertainties involve possibilities of causing biased results depen-
dently on the initial parameter settings that are required in route measurement mod-
els (Figure 3.1). In this study, we propose a novel framework to estimate route choice
models with less biases, by estimating σ as a link-specific parameter and solving a
fixed point problem of θ between the prior and the estimation result. Note that the
framework of joint estimation of Bierlaire and Frejinger, 2008 is theoretically clear;
however, it leads to expensive computation and/or biased estimation results (Figure
3.1 a). This study proposes another approach with the aims at making computation
simple and reducing parameter biases.

3.3 Framework and notations

The main goal of this study involves estimating the parameters of route choice model
with less biases based on a sequence of GPS location data with measurement error.
In this section, we present the framework of the study by defining the route choice
model and the route measurement model with the notations used in the models.

3.3.1 Network

We first define a transportation network G = (N ,A), where N is the set of nodes
and A is the set of links. The horizontal position of each node i ∈ N is described
by xi = {xi1, xi2}, which is a pair of coordinates that typically consist of latitude and
longitude. Link a ∈ A is a line and is characterized by the vector of spatial attributes
ya and the pair of its up-node and down-node (ua, da). We define A(a) as the set of
possible next states of link a and δ(a′|a) as the indicator that equals one if the pair
consisting of link a and link a′ ∈ A(a) is directly connected, and zero otherwise, i.e.,
A(a) = {a′ ∈ A|δ(a′|a) = 1}.

3.3.2 Route choice model

We assume that travelers move continuously on the network G = (N ,A) to go from
a place (an origin) to another (a destination). In this study, it is assumed that travelers
do not determine their routes pre-trip but sequentially choose a link at every node. In
the link-based route choice model, a route is not directly chosen but the output of
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sequential link choices. At each period t, each traveler is associated with the current
state at ∈ A and chooses the next state link at+1 that maximizes the utility from the
set A(at). The link choice probability is formulated as follows:

p(at+1|at) = P

(
ũ(at+1|at) = max

a′t+1∈A(at)
ũ(a′t+1|at)

)
, (3.1)

where

ũ(at+1|at) = u(at+1|at) + ε(at+1). (3.2)

The deterministic utility component of the transition from link at to link at+1 is the
function of the vectors of spatial attributes yat , ya+1 and the vector of unknown pa-
rameters θ, i.e., u(at+1|at) = u(yat , ya+1, θ). The error term of the utility ε(at+1) is
i.i.d. extreme value type I. Based on Equation (3.1), the path choice probability is
given as the product of the link choice probabilities:

P(r = [a0, . . . , aT]) =
T−1

∏
t=0

p(at+1|at; θ) (3.3)

where a0 and aT are defined as the origin link and the destination link, respectively.
As a link-based route choice model in the context of discrete choice model, Fosgerau,
Frejinger, and Karlstrom, 2013 proposed the recursive logit (RL) model that does not
require path enumeration and is consistent with the conventional MNL route choice
model with the universal set. Mai, Fosgerau, and Frejinger, 2015 proposed RL mod-
els that consider the correlation structures among paths, based on the GEV model
(McFadden, 1978; Bierlaire, 2002; Daly and Bierlaire, 2006). Oyama and Hato, 2017
presented a framework of link-based route choice model with the discount factor for
integrating the description of myopic and global decisions and mentioned that the
model can be applied to pedestrian myopic route choice analysis.

3.3.3 Route measurement model

We observe routes and estimate a route choice model, based on the data as sequences
of GPS measurements recorded by the built-in sensors in devices that are carried by
travelers. We denote a measurement as m̂ = (x̂, τ̂), where x̂ = (x̂1, x̂2) is the pair of
coordinates (usually latitude and longitude) and τ̂ is the measurement timestamp.
For a given trip z, we obtain a chronologically ordered sequence of Nz measurements
m̂ = (m̂1, ..., m̂n, ..., m̂Nz), which are recorded by the same device. It is assumed that
the recorded locations x̂ always include the measurement errors while the times-
tamps τ̂ have no measurement error. The true location of x̂, x, is a point on a link, and
the difference between x̂ and x follows a probability distribution p(x̂|x; σ), where σ
is the variance of GPS measurement error. As discussed in Section 3.2, the variance
has been assumed as a given and constant value over a network in previous works.
The measurement error of GPS localization is a variable specific for each measure-
ment, and the error arises from various factors such as atmosphere, noise of receiver,
interception and multipath reflection. Also, the presences of buildings or structures
have large effects. In this study, we focus on the fact that the spatial attributes do not
significantly change in the same street between two intersections, and we assume
that the variance of measurement error is a link-specific value, i.e., σ = σa. That is, we
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estimate a route choice model under the assumptions of inter-link heteroscedastic-
ity of measurement error, which has ignored in previous works but is important for
urban pedestrian networks.

3.4 Link-based route measurement model

In this section, we propose a link-based route measurement model. Path-based prob-
abilistic route measurement models evaluate the probability of each possible route
based on all of measurements that are included in a trip. In this case, the link on
which the true location of each measurement is located is unknown, and moreover,
it is impossible to consider all links as the candidates from the computation view-
point. Thus, the restriction of the set of possible routes is perfomed in advance by
using links included in the domain relevant to each measurement that is defined by
the variance of measurement error (Bierlaire and Frejinger, 2008).

In contrast, we focus on that the sequential link identification gives us the set of
possible next links as the output of the model; namely, if link a is specified as the
state link at a period, then we can assume that the next link is included in A(a).
This explicitly specifies the spatial relationship between a measurement and the set
of link candidates on which the true location is possible to be located, and thus it is
possible to calculate the measurement equation of each possible link. Based on the
measurement equation, we can estimate the link-specific variance of measurement
error.

Furthermore, the link-based route measurement model is based on a Bayesian
approach. The incorporation of a link-based route choice model as the prior corrects
the observation by a behavioral route choice mechanism without requiring the path
enumeration.

3.4.1 Data decomposition

In the link-based route measurement model, sequential link choice behavior is the
shared framework for both measurement and behavioral models. In order to con-
sider both route choice model and route measurement model in the same frame-
work, we first process the unit of the route measurement.

We define the discretized time sequence (1, ..., t, ..., Tz) where t− ≤ t ≤ t+ is a
time period and the interval t̄ = t+ − t− is consistent for all time periods. t−, t+

indicate elapsed times from the beginning of a trip, i.e., τ̂Nz − τ̂1 = T+
z . Note that t̄ is

defined by using the information of network structure to satisfy the link connection
condition.

Let m̂t = (m̂t
1, ..., m̂t

j, ..., m̂t
Jt
) denote a vector of measurements that are observed

within a time period t and satisfy t− ≤ τ̂t
j ≤ t+. Jt is the number of measurements

included in m̂t and satisfies ∑T
t Jt = Nz. Therefore, the sequence of measurements

for a trip m̂ is decomposed as (m̂1, ..., m̂t, ..., m̂T). At each period, we use a vector m̂t

and observe the state link at. We assume that the true states of all measurements ob-
served within the same period are located in the same link and sequentially perform
link measurement from t = 1 to t = T.

3.4.2 Sequential link measurement

At every time period t, we use a decomposed data m̂t and observe the link at based
on link likelihood. The candidates of state link are defined as the links that are
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connected to the previous state at−1, A(at−1). Given a vector of measurements m̂t

and the previous state at−1, the link likelihood p(at|m̂t, at−1) is formulated from the
Bayes’ theorem:

p(at|m̂t, at−1) ∝ p(m̂t|at; σat)p(at|at−1; θ), (3.4)

where p(m̂t|at; σat) denotes a measurement equation, giving the probability that the
measurement vector m̂t is observed if at is the actual link, and σat is the unknown
link-specific variance of GPS measurement error. p(at|at−1; θ) denotes a route choice
model, and we use a link-based route choice model as mentioned in Section 3.3.2.
θ is a vector of unknown parameters to be finally estimated. In the route choice
context, the state variable at can be discretized, and thus Equation (3.4) is replaced
as the following standardization form:

p(at|m̂t, at−1) =
p(m̂t|at; σat)p(at|at−1; θ)

∑at∈A(at−1) p(m̂t|at; σat)p(at|at−1; θ)
. (3.5)

Based on the link likelihood, we sequentially identify the state link at each time:

at = arg max
at∈A(at−1)

p(at|m̂t, at−1). (3.6)

The iteration of this process until t = T obtains an inferred path r = [a1, ..., at, ..., aT]
as a sequence of identified links. The process of the link-based measurement model
is summarized in Figure 3.2. It should be noted that we propose an algorithm to
avoid a problem specific for the link-based route measurement model (see Appendix
A.1).
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FIGURE 3.2: Image of the link-based route measurement model

3.4.3 Measurement probability

Given the assumption that timestamps τ̂ include no measurement error, the proba-
bility that the vector of measurements m̂t = (m̂t

1, ..., m̂t
Jt
) is observed if at is the actual

state is given as

p(m̂t
1, ..., m̂t

Jt
|at; σat) = p(x̂t

1, ..., x̂t
Jt
|at; σat). (3.7)
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Also, we assume that traveler locations on a link depend on only elapsed time from
the arrival at the link, and traveler moves at the constant speed with white noise on
the link (Equation (3.9) - (3.11)). Hence, Equation (3.7) is decomposed as follows:

p(x̂t
1, ..., x̂t

J |at; σat) =
J

∏
j=1

p(x̂t
j |at; σat),

=
J

∏
j=1

∫
xj∈at

p(x̂t
j |xj, at; σat)p(xj|at)dxj (3.8)

where,

xj = lxdat
+ (1 − l)xuat

, (3.9)

l =
τ̂t

j − t−

t+ − t−
+ η, (3.10)

η ∼ N(0, σ2
η). (3.11)

Equation (3.8) indicates that the true location xj is probabilistically distributed on
link at, and we calculate the line integral of the probability on the link. p(x̂t

j |xj, at; σat)

denotes the probability distribution that the measurement error of the GPS location
follows. The errors in horizontal directions are generally assumed as independently
normally distributed (Diggelen, 2007), and thus the distance between the measure-
ment and the true location, d, follows a Rayleigh distribution. Therefore, the prob-
ability that a location xj on link at generates the measurement x̂t

j is formulated as
follows:

p(x̂t
j |xj, at; σat) =

∥x̂t
j − xj∥
σ2

at

exp

(
−
∥x̂t

j − xj∥2

2σ2
at

)
, (3.12)

where the variance σat relates to the localization error of GPS measurements. The
variance is assumed to consist of the errors of network data and GPS devices (Qud-
dus, Noland, and Ochieng, 2005; Bierlaire, Chen, and Newman, 2013). As men-
tioned above, the error in previous studies is assumed as given and constant over
the network, and thus the measurement probabilities are biased. Conversely, our
link-based measurement model allows the value to change dependently on each link
at ∈ A(at−1). The parameter σat is estimated by the maximum likelihood estimation
at each link:

σat = arg max
σ

p(m̂t|at−1; σ), (3.13)

where

p(m̂t|at−1; σ) = ∑
at∈A(at−1)

p(m̂t|at; σt)p(at|at−1; θ). (3.14)

The link likelihood p(at|m̂t, at−1) in Equation (3.5) is also calculated using the esti-
mated variance σat by Equation (3.13).
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3.5 Structural estimation

In the context of route choice analysis, identified routes by route measurement model
are used as the data set to estimate the behavioral parameters of route choice model.
This section focuses on the relationship between the measurement model and the
behavior model, and proposes a method of structural estimation as a framework to
reduce biases in the process of route measurement and parameter estimation.

3.5.1 Estimation of route choice models

A route choice model is usually estimated by the maximum likelihood estimation.
In this study, the log-likelihood function of the link-based route choice model is for-
mulated as the function of a vector of parameters θ as follows:

LL(θ) = ln

(
∏

z

Tz

∏
t=2

p(at|at−1; θ)δz,t
at

)

= ∑
z

Tz

∑
t=2

δz,t
at

ln (p(at|at−1; θ)), (3.15)

where z indicates the suffix of trip, and δz,t
at equals one if trip z uses link at at time

t, and zero, otherwise. It is assumed that p(at|at−1; θ) is the link-based route choice
model, and the same model is used as the prior in the link-based route measurement
model. θ is estimated by maximizing the log-likelihood function LL(θ):

θ̃ = arg max
θ

LL(θ). (3.16)

Note that in the case of link-based route choice models based on the recursive formu-
lation of the dynamic programming (Fosgerau, Frejinger, and Karlstrom, 2013; Mai,
Fosgerau, and Frejinger, 2015; Oyama and Hato, 2017), the algorithms that include
the process of solving the Bellman equation, such as the nested fixed point (NFXP)
algorithm (Rust, 1987), the nested pseudo likelihood (NPL) algorithm (Aguirregabiria
and Mira, 2002), are used for parameter estimation.

3.5.2 Algorithm of structure estimation

The route measurement model based on a Bayesian approach requires a route choice
model as the prior behavioral information. The vector of parameters θ is initially re-
quired to evaluate the route choice model. It is not possible to know the true value
of θ in advance, and thus θ in previous studies is defined as, e.g., estimated param-
eters from historical or external data sources (Chen and Bierlaire, 2015), arbitrarily
given (Danalet, Farooq, and Bierlaire, 2014), and assumed as uniformly distributed
if no information is available (Chen and Bierlaire, 2015; Hunter, Abbeel, and Bayen,
2014). However, in any cases, it is clear that the given parameters are not consis-
tent with the finally estimated parameters. This results in biases in both the route
measurement probabilities and the estimated parameters because θ is supposed to
be consistent with the final estimation result. In this study, we focus on that θ is a
shared vector of parameters in the measurement and behavior models and propose
a method for estimating the models while retaining the consistency of the parame-
ters. The structural estimation method is described in Figure 3.3 and given by the
following steps:
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FIGURE 3.3: Flow of structural estimation method

Step 1: Initialization. Input data m̂ and initial parameters θ̄, and set h = 1.

Step 2: Estimation of the route measurement model. Estimate link variance σa and
paths r by using the link-based measurement model, and set σ(h) = σ and
r(h) = r.

Step 3: Estimation of the route choice model. Estimate parameters θ of the link-based
route choice model by the maximum likelihood estimation using estimated
behavior data set r(h). Set θ(h+1) = θ.

Step 4: Convergence Check. Finish the algorithm if the following inequality with
convergence tolerance ξ is satisfied:

|θ(h+1) − θ(h)| < ξ, (3.17)

then θ̃ = θ(h), σ̃ = σ(h) and r̃ = r(h). Otherwise, set h = h + 1 and back to
Step 2.

The algorithm iterates the process of measurement and estimation until the pa-
rameters of the route choice model arrive at a fixed point. Note that this study leads
to an efficient computation and reduces the memory space by sequentially identify-
ing links sequentially in the measurement model. For this reason, we optimize the
likelihood for each model in two-stages. We consider the extension to the framework
of joint estimation and the proofs of solution’s existence and uniqueness as the fu-
ture works, which are discussed in the end. In this paper, we use several numerical
examples to examine the properties of our models.
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3.6 Numerical examples

In this section, we show two numerical examples. In the simulation analysis based
on a simple network, we examine the link measurement accuracy and the parameter
estimation results, under the condition that we know the true values. Subsequently,
we use real data of a pedestrian network in a city center and estimate a route choice
model by using the proposed framework.

3.6.1 Simulation analysis

We first examine the proposed models using a simple network of Figure 3.4. The
numbers in the parenthesis on each link indicates the continuous cost CCa, the dis-
crete cost DCa (1 or 0) and the variance of the measurement error σa, respectively. In
the network, we assume the inter-link heteroscedasticity of the measurement errors:
links on the line x2 = 30 and x2 = 60 have large variances σ = 10 and σ = 20,
respectively, and the other links have small variance σ = 5. Figure 3.5 shows exam-
ples of the plots of two sampled paths that pass links with different variances from
each other. The locations generated from path (b) have larger errors (are observed
as more distant from the true values) compared to path (a), because path (b) uses
the links with large variances. Simulations assume pedestrian route choice behavior
and are conducted with a first-order Markov model that corresponds to the myopic
link choice (MyL) model (Oyama and Hato, 2017). The link utility function and the
link choice probability are formulated as follows:

u(at+1|at) = θ1LCat+1 + θ2CCat+1 + θ3DCat+1 + θ4UTat+1|at , (3.18)

and

p(at+1|at) =
exp{u(at+1|at)}

∑at+1∈A(at) exp{u(at+1|at)}
, (3.19)

where LCa is the length of link a and UTa′|a is a u-turn dummy variable that equals
one, if the up node of link a corresponds to the down node of link a′, and zero oth-
erwise. We set the interval of the time discretization as t̄ = 30s and the interval of
measurements as τ̂n − τ̂n−1 = 10s. Given the parameter θ̄ = [−0.1,−2,−1.5,−4]
(TRUE values), we generate 50 routes and the sequences of measurements corre-
sponding to the routes.

Table 3.1 indicates the measurement accuracy and the difference of estimated σ̃
from the true value σ∗ in each model. The measurement accuracy is calculated as
the ratio of correspondence of the identified link ãt to the true (simulated) link a∗t .
The estimation error of σ is,

1
|Z||T| |σ̃a − σ∗

a |, (3.20)

where |Z||T| is the sample size, i.e., the number of link observations.
In Table 3.1, θ = [0, 0, 0, 0] means that the measurement model does not use the

prior (no information). Model 1 also assumes the constant variance of measurement
error over the network, σa = 20 (∀a ∈ A), and the measurement accuracy is 54.57
%. Model 2 estimates the link-specific variances, and the measurement accuracy is
76.86 %, and this indicates that the estimation of σ refines the measurement accu-
racy. Also, in all cases, the switching algorithm (Appendix A.1) refines both the link
measurement accuracy and the estimation result of σ.
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FIGURE 3.5: Examples of plots and the effect of σa

Model 3 and 4 incorporate the prior probability into the measurement model.
In the case that we use the true parameters as the prior and the switching algorithm
(model 4), we achieve 91.71 % accuracy of link measurement. Conversely, in the case
of model 3 that uses the parameters completely different from the true values, the
results are less accurate compared to the case without the prior information (model
1, 2). This indicates that the inaccurate prior has a large effect on and corrects the
measurement in the wrong direction, in the situation that the measurement uncer-
tainty is large, e.g., when we have few measurements, when localization is weak,
and when the network is dense.

TABLE 3.1: Accuracy and the difference of σ in each model

Link accuracy(%) Ave.|σ̃a − σ∗
a |

Model σ θ̄ - Switching - Switching
1 Given [0, 0, 0, 0] 54.57 68.86 - -
2 Estimated [0, 0, 0, 0] 76.86 82.86 5.848 4.40
3 Estimated [−1.5,−0.1,−2,−10] 4.86 38.29 41.99 21.21
4 Estimated [−0.1,−2,−1.5,−4] 76.86 91.71 7.58 4.06

Using model 2 and model 3 in Table 3.1, we identify the routes and estimate the
route choice model of Equation (3.18) and (3.19). Table 3.2 reports the estimation
results. "One-way" in the table denotes the estimation result obtained by using be-
havioral data reproduced from the measurement model with θ̄, which denotes the
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initially given parameters. "Structural estimation" indicates the result from the iter-
ation process of the structural estimation in Figure 3.3.

We set the convergence tolerance as ξ = 1e − 10. The sample is the number of
observed link choices (in the 50 routes). Note that the initial log-likelihoods LL(0)
of "One-way" are different between model 2 and 3 because the identified route sets,
which is the data sets for estimating route choice models, depend on the initial value
of the prior θ̄.

In both cases of (a) θ̄ = [0, 0, 0, 0] (model 2) and (b) θ̄ = [−1.5,−0.1,−2,−10]
(model 3), "One-way" estimation results are largely different from the true values:
the total differences correspond to 3.643 and 6.058, respectively. As seen in Table 3.1,
the link measurement accuracies of model 2 and 3 are not high, and the estimation
results of route choice models are biased. In model 3, it is also seen that positive and
negative signs are reversed, and the estimated values differ from the initial values
as well as from the true values. It is assumed that the prior does not correct the
measurement and instead functions as a noise.

In contrast, the results of the structural estimation are refined by the iteration
process of measurement and estimation, and the estimated parameters exhibit val-
ues close to the true values. Moreover, both of two tested models converge to the
same values, irrespective of θ̄. The t-values and ρ̄2 are also refined. These results in-
dicate the effectiveness of our structural estimation method. It should be noted that
we obtain the same converged values in the cases that we set initial value of the prior
as θ̄ = [−10,−10,−10,−10], [−100, 0, 0, 0], [−100,−100,−100,−100], [10, 10, 10, 10].

We also test the convergence process for several cases with different initial pa-
rameters of the route choice model θ̄ in Figure 3.6. The horizontal axis and the verti-
cal axis of the figure indicate the difference between the convergence value and the
h-th estimated value of θ and σ, respectively. We use the two cases discussed above:
(a) θ̄ = [0, 0, 0, 0] (no information) and (b) θ̄ = [−1.5,−0.1,−2,−10] (wrong param-
eter set), and additional two cases (c) θ̄ = [−0.1,−2,−1.5,−4] (the true values) and
(d) θ̄ = [10, 10, 10, 10] (another wrong parameter set). In all cases, regardless of the
largely different values from the true parameters, the models converge in a small
number of iterations and with little vibration.

Additionally, in order to examine the dependence of estimation results on sam-
ples, we generate 100 datasets using model 2 (θ̄ = [0, 0, 0, 0]) and implement the
structural estimation for each dataset. Table 3.3 reports the averages and the stan-
dard deviations of estimated parameters of route choice model, the number of iter-
ations, and computational time. While we obtain the estimate with respect to travel
time (θ1) close to the true value stably, the estimates of the other parameters are dif-
ferent from the true values. However, all parameters are closer to the true value than
the initial parameters (θ̄ = [0, 0, 0, 0]), and it is expected that enriching the measure-
ment model improves the estimation results. With respect to the estimated param-
eter of the u-turn dummy variable, the standard deviation is large. It is assumed
that the number of path observations including u-turns is small because we con-
sider the large resistance for u-turns in the true model (θ∗4 = −4). The averages of
the number of iterations and the computational time correspond to 4.086 and 858.2
seconds, respectively. Note that in these experiments, there are seven cases in which
the structural estimation does not converge out of 100 cases. We show the possibility
that the structural estimation converges regardless of the initial parameter settings;
however, the experiment indicates that the convergence depends on samples and
the structural estimation remains a challenge for the convergence property. We con-
sider an extension to the analytical framework as an important future study, which
is addressed in further detail in Section 3.7.2.
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TABLE 3.2: Structural estimation results

(a) Input: θ̄ = [0, 0, 0, 0] (model 2, no information)
One-way Structural Estimation

TRUE Estimates abs(diff.*) t-value Estimates abs(diff.) t-value
θ1 -0.1 0.002 0.102 0.101 -0.064 0.036 -2.562
θ2 -2 -0.755 1.245 -4.164 -1.727 0.273 -6.882
θ3 -1.5 -1.312 0.188 -4.772 -1.046 0.454 -3.519
θ4 -4 -1.892 2.108 -8.864 -3.519 0.481 -9.739
total error 3.643 1.244
sample 350 350
LL(0) -373.221 -371.887
LL(θ̃) -269.872 -211.308
ρ̄2 0.266 0.421
iteration 6

(b) Input: θ̄ = [−1.5,−0.1,−2,−10] (model 3, wrong values)
One-way Structural Estimation

TRUE Estimates abs(diff.) t-value Estimates abs(diff.) t-value
θ1 -0.1 -0.097 0.003 -5.312 -0.064 0.036 -2.562
θ2 -2 -0.419 1.581 -2.710 -1.727 0.273 -6.882
θ3 -1.5 0.178 1.678 0.963 -1.046 0.454 -3.519
θ4 -4 -1.204 2.796 -6.774 -3.519 0.481 -9.739
total error 6.058 1.244
sample 350 350
LL(0) -373.560 -371.887
LL(θ̃) -328.587 -211.308
ρ̄2 0.110 0.421
iteration 8
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FIGURE 3.6: Convergence processes

TABLE 3.3: Average and standard deviation of estimated parameters,
the number of iterations and computational time for 100 structural

estimations

θ̃1 θ̃2 θ̃3 θ̃4 Iteration CPU time (s)
Ave. -0.112 -1.140 -1.006 -2.916 4.086 858.2
Std. err. 0.023 0.663 0.413 4.006 1.007 229.7

3.6.2 Real data analysis

Finally, we test the proposed method based on real GPS data of pedestrians in a
dense city center network. The data is obtained from Probe Person (PP) surveys in
Matsuyama city, Japan. The PP surveys use an automatic recording system of posi-
tion and time based on GPS and Internet communications by using cellular phones
(Hato, 2006), where the accurate travel information such as trajectories and behavior
contexts is observed throughout the survey (Hato, 2010). The data is used to ob-
serve routes and estimate parameters of the pedestrian route choice model by the
structural estimation method.

We use a MyL model in a manner similar to the simulation analysis. The utility
function when a pedestrian moves from link at to at+1 are defined as follows:

u(at+1|at) = θ1LUat+1 + θ2CUat+1 + θ3DUat+1 + θ4UTat+1|at , (3.21)

where LUa is the link length [m], CUa is the width of sidewalk [m], DUa is the ar-
cade dummy variable, and UTa′|a is the u-turn dummy variable. The link choice
probability is given by Equation (3.19). We set the initial values as θ̄ = [0, 0, 0, 0] and
randomly select 30 trips that include a total of 792 locations and 270 link choices.
The route choice model is estimated with the structural estimation method. The
convergence tolerance is set as ξ = 1e − 10.
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TABLE 3.4: Structural estimation result using Probe Person data

Input: θ̄ = [0, 0, 0, 0] (No information)
One-way Structural Estimation

Estimates t-value Estimates t-value
θ̃1 -0.007 -2.473 -0.001 -0.428
θ̃2 0.088 1.497 0.134 1.582
θ̃3 -0.004 -0.011 2.760 4.288
θ̃4 0.774 0.532 0.469 3.344
sample 270 270
LL(0) -307.608 -309.066
LL(θ̃) -302.174 -225.162
ρ̄2 0.005 0.259
iteration 11

Table 3.4 reports the estimation result. "One-way" shows the result in which we
estimate the route choice model based on the identified routes without prior infor-
mation. Compared to the result, the structural estimation exhibits better values of
final log-likelihood LL(θ̃) and ρ̄2. With respect to the result of the one-way model,
the parameter of link length (travel time) θ1 shows the significant sign. In contrast,
with respect to the result of the structural estimation, θ1 is not significant; or rather,
the parameters of arcade dummy variable (θ3) and the u-turn dummy variable (θ4)
show the significant signs. These results indicate a possibility that without the prior
behavioral information, it is not possible to observe the choice of links with arcade
due to large measurement uncertainty, and thus the biased preference of route choice
behavior is estimated, as the travel time is the sole significant parameter in the one-
way model. In fact, several previous studies report that pedestrian route choices are
affected by the presence of attractors rather than congestion level or travel time, dif-
ferently from other transportation modes (Kurose, Borgers, and Timmermans, 2001;
Borst et al., 2008).

Moreover, we plot the estimation results of link-specific variance of measure-
ment error σa that are obtained in the link-based route measurement model, on the
network (Figure 3.7). The line weights in Figure 3.7 show the size of variance. The
result shows that the spatial distribution of the variance is not at all uniform over
the network. This suggests that the assumption in previous studies of a given and
constant value of variance over network can lead to biases in the route measurement
process.

Also, we check the estimated variance on each link and obtain several meaning-
ful results. Street A in Figure 3.7 that consists of linearly connected multiple links
corresponds to the main shopping street that has an arcade with a low height. It is
assumed that the existence of the arcade makes the variance larger than other streets.
Specifically, B and C are the links in front of the city hall and the prefecture hall, re-
spectively. These halls are often chosen as the destination of travelers in the data
used for the case study. On the PP surveys, participants manually report the end
of trips on their cellar phones. Therefore, it is assumed the information of locations
after they enter the buildings of the destination is often included in trips, and the
variances of links B and C increase due to the errors of the inside of buildings. In
both cases, they are realistic results for the Matsuyama network.
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3.7 Conclusion and discussion

3.7.1 Conclusion of the paper

In extant studies, the estimation process of route choice model with measurement
uncertainty includes biases caused from the initial parameter settings that are re-
quired in probabilistic route measurement models. This study focuses on the mech-
anism of the increase in estimation biases that depends on the relationship between
route measurement and route choice models, and we propose a novel framework to
estimate route choice parameters with less biases.

This study begins to introduce the link-based route measurement model, based
on the assumption of sequential link choice behavior. The sequential link identifica-
tion helps in clarifying the relationship between each measurement and the candi-
date set of true links, and thus the link-based route measurement model allows the
estimation of the link-specific variance of GPS measurement error. In previous stud-
ies, this variance has been assumed to be a given and constant value over network,
which leads to biases in the evaluation of route measurement probability. The biases
can significantly increase in urban pedestrian networks because the network is often
dense compared to the size of measurement error, and the variance depends on spa-
tial attributes of each link. The link-based route measurement model is proposed to
consider and solve this problem.

Also, we use a link-based route choice model as the prior information based on
the Bayesian approach to correct the measurement probability by considering the
route choice mechanism without the path enumeration. Furthermore, we focus on
the possible bias due to the incorporation of the prior and propose a framework of
structural estimation to reduce the biases. The parameter of route choice model that
is used as the prior is supposed to be finally estimated based on route choice data
identified by route measurement model. The structural estimation is the method for
solving the fixed point problem between the prior and the estimation result of the
route choice model.

The numerical results involve confirming the effectiveness of the estimation of
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the link-specific variance and the switching algorithm to refine the route measure-
ment. We also recognize that the measurement result is highly dependent on the
behavioral parameters when we incorporate the prior into the measurement model
and the measurement uncertainty is large. With respect to the structural estimation
results, the parameters converge to the same values irrespective of initial parame-
ter settings, and we obtain estimates closer to the true values compared to the case
without the structural estimation. Ultimately, we use a real GPS data of pedestrians
in a city center network, and the structural estimation reveals the choice mechanism
of arcade link that is typically difficult to identify. Moreover, the distribution of the
estimated variances of measurement error is realistic. The results verify the effec-
tiveness of our framework.

3.7.2 Discussion for the future research

In the end, we would like to discuss prospects for the future research. In this paper,
we propose a framework to sequentially determine links in a route measurement
model. Through the numerical examples, we obtain the convergence and mean-
ingful results. However, it is expected to clarify the theoretical properties of the
framework, such as existence, uniqueness, and convergence of the solution, in fu-
ture studies. The next work should focus on extending the framework to the joint
estimation of route measurement and route choice models by maximizing the fol-
lowing likelihood function:

p(m̂1:T; σ, θ) = ∑
a1:T∈P

p(m̂1:T|a1:T; σ)p(a1:T; θ), (3.22)

where P is the set of path candidates that is generated in the process of the link-
based route measurement model, and m̂1:T and a1:T are the arrays of measurements
and links from t = 1 to t = T, respectively. Equation (3.22) indicates the probability
that the sequence of measurements m̂1:T is reproduced by the route measurement
model and the route choice model. Both σ and θ are estimated at the same time as
the solutions of the maximization problem of Equation (3.22). However with respect
to the calculation of Equation (3.22), in the link-based route measurement model it
is required to preserve the link measurement probabilities at each time period and
then to calculate the path measurement probabilities as the products of link mea-
surement probabilities. The calculation cost depends on the number of paths |P|
and is expensive due to the combinatorial complexity. Bierlaire, Chen, and New-
man, 2013 proposed a method for efficiently calculating measurement probabilities
of paths; however, the path-based approach cannot identify the link-specific vari-
ances of measurement errors as we discussed in Section 3.2. Therefore, a future
study should include the development of algorithms of preserving link measure-
ment probabilities and maximizing the likelihood of the joint estimation. The exam-
ination of the above-mentioned theoretical properties of the framework is included.
Additionally, the statistical test of the relationship between the spatial attributes of
links and σa and the elaboration of the simulation analysis in various cases are inter-
esting topics for future research.
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Chapter 4

Dynamic sequential route choice
model for dynamic network
analysis

In this chapter, we propose a dynamic sequential route choice model, which is a
generalized formulation of global and myopic decisions in route choice behavior.

Emerging sensing technologies such as probe vehicles equipped with Global Po-
sitioning System (GPS) devices on board provide us real-time vehicle trajectories
that are helpful for the understanding of the cases, which are significant, but diffi-
cult to observe because of its infrequency, such as gridlock networks. On the premise
of this type of emerging technology, this paper propose a novel route choice model
that describes route choice behavior, both in ordinary networks, where drivers ac-
quire spatial knowledge of networks through their experiences, and in extraordi-
nary networks, which are situations that drivers rarely experience, and applicable
to real-time traffic simulations. In extraordinary networks, drivers do not have any
experience or appropriate information. In such a context, drivers have little spa-
tial knowledge of networks and choose routes based on dynamic decision mak-
ing, which is sequential and somewhat forward-looking. In order to model these
decision-making dynamics, we propose a dynamic sequential route choice model
using a sequential discount rate, which is a discount factor of expected future util-
ity. Through illustrative examples, we show that the sequential discount rate re-
flects drivers’ decision-making dynamics, and myopic decisions can confound the
network congestion level. We also estimate the parameters of the proposed model
using a probe taxis’ trajectory data collected on March 4, 2011 and on March 11, 2011,
when the Great East Japan Earthquake occurred in the Tokyo Metropolitan area. The
results show that the sequential discount rate has a lower value in gridlock networks
than in ordinary networks.

Keywords: Route choice model, Dynamic discrete choice model, Sequential discount
rate, Urban gridlock, Trajectory data, Probe vehicles



56Chapter 4. Dynamic sequential route choice model for dynamic network analysis

Real-time trajectory data

Historical database

t=1

t:=t+1

t=11

Connected probe vehicles

: Gridlock

Network

Data processing & Anomaly detection

Estimation

Prediction

Trajectory-oriented tra!c management

-Scaled Recursive Logit model

Tra!c simulation / Network loading

Dynamic sequential route choice model

(　　　　　　　　　　　　　　)

Route guidance / Signal optimization

FIGURE 4.1: Framework of trajectory-oriented gridlock network
management

4.1 Introduction

A gridlock network is an extraordinary situation that drivers do not usually experi-
ence, unlike congestion due to accidents, construction, rush hour, and special events.
In gridlock networks, drivers cannot make global decisions for their route choice
because of which they travel in confusion. These extraordinary route choice mecha-
nisms may confound the network situation. Therefore, technologies to observe and
analyze these behaviors are needed.

The mainstream method of traffic congestion control is the crossing or area con-
trol (Daganzo, 2007; Geroliminis and Daganzo, 2008) that is based on traditional
vehicle detection sensors, but this method cannot deal with network-based conges-
tion spread, which is critical in dealing with gridlock networks. On the other hand,
emerging sensor technologies such as probe vehicles equipped with global position-
ing system (GPS) devices are helpful to understand the infrequent but significant be-
havior of each vehicle in gridlock networks. Using certain type of vehicles as probe
vehicles, such as taxis or buses, has increased the monitoring capability (Dailey and
Cathey, 2002). This emerging sensor technique is now ubiquitous and provides real-
time information of vehicle trajectories, while traditional vehicle detection sensors
provide only flow or density at fixed locations.

In this paper, on the premise of this type of emerging technology, we aim at
developing a novel route choice model applicable to a trajectory-oriented frame-
work for gridlock network analysis and management (Figure 4.1). The management
method is based on traffic simulations using trajectories from real-time and ubiqui-
tous technologies in contrast to the previous route choice models that require the
choice set generation (e.g., Bekhor, Ben-Akiva, and Ramming, 2006) and the infor-
mation regarding entire trips, including origin and destination for estimating pa-
rameters. Herein, we propose a dynamic sequential route choice model that does
not require the information of entire trips to estimate parameters. Using the model,
in the framework of Figure 4.1, the parameter estimation is implemented at each
time period, because we assume that not only network situations but also behav-
ioral preferences can change at different time periods.
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Moreover, previous route choice models describe only the route choice behavior
of habitual drivers in daily networks. In a route choice modeling context, it is as-
sumed that drivers usually acquire spatial knowledge of networks through direct en-
vironmental experiences (Gale et al., 1990). That is, they postulate that drivers have
global spatial cognition to evaluate the path utilities of all alternatives. Contrary to
such a daily route choice model, in extraordinary situations such as natural hazards
or urban gridlocks, drivers’ route choice behavior has distinctive features. They are
non-habitual situations where drivers’ have no experience. Moreover, drivers can-
not gain appropriate information because of network disarray, as a result, they have
little spatial knowledge of networks. In such a situation, route choice decisions be-
come sequential and somewhat forward-looking, that is, drivers choose routes based
on dynamic decision making.

This study aims at developing a route choice model, which describes both route
choice behavior in ordinary networks and gridlock networks, and focuses on the
decision-making dynamics in sequential route choice models. Existing sequential
route choice models (e.g., Baillon and Cominetti, 2008; Fosgerau, Frejinger, and Karl-
strom, 2013) formulate route choice behavior based on sequential link choices con-
veniently; however, they do not discuss the serializability of decisions and result in
the equivalent path probability to the path-based MNL model. To the contrary, we
deal with the dynamic sequential decisions of drivers, which mean that the decisions
at possible future states affect the decision at the current state. For this reason, we
apply the concept of a discount factor in the dynamic discrete choice model (Rust,
1987) and formulate a dynamic sequential route choice model, where the dynamics
is within a trip. Note that we model the dynamics of decisions as the mechanism of
route choice behavior, as opposed to dealing with the route switching/adaptation
behavior in time-dependent networks as previous dynamic route choice models do:
therefore, the targets are different from each other. It is possible to combine both
the dynamics of decisions and networks; however, in this study we concentrate on
the former and assume a static and deterministic network to clarify the impact of
decision-making dynamics in route choice models.

We also estimate parameters of the route choice model as a disaggregate dis-
crete choice model, rather than macroscopic analyses of extraordinary networks
(Daganzo, 2007; Mahmassani, Saberi, and Zockaie, 2013).Real-time parameter es-
timation and traffic simulations are significant for gridlock network management;
however, path-based route choice models require the information on entire paths of
trips and choice set generations. On the other hand, sequential route choice mod-
els require the information of only link transitions and the destination, for parame-
ter estimation, and these are applicable to emerging real-time sensing technologies.
Moreover, we focus on the change of route choice mechanisms in each network con-
dition and compare the estimation results among multiple time periods over two
very different days (ordinary/extraordinary) using probe-vehicle data. One of the
days is that of the Great East Japan Earthquake.

The paper is organized as follows. In Section 4.2, we present a literature review
of dynamic route choice models, which describe the route decision-making process
en-route, as opposed to pre-trip route choice models and sequential link choice mod-
els. In Section 4.3, we formulate a route choice model as a simple extension of the
recursive logit model (Fosgerau, Frejinger, and Karlstrom, 2013) using the concept of
a sequential discount rate. In Section 4.4, we give illustrative examples to show the
difference between route choice models based on global decision and those based
on myopic decisions. In Section 4.5, we then discuss the comparison of estimation
results using probe-vehicle data in the Tokyo Metropolitan area. Conclusions and
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discussion of future research directions are provided in the end.

4.2 Literature review

Most existing route choice models describe the route choice behavior of habitual
drivers in deterministic networks, e.g., C-logit (Cascetta et al., 1996), Link-Nested
Logit (Vovsha and Bekhor, 1998) and Path Size Logit (Ben-Akiva and Bierlaire, 1999).
In these studies, drivers choose routes pre-trip and do not change the routes en-route:
that is, the dynamics of route choice behavior is ignored. We review here dynamic
route choice models, which describe the route decision processes en-route rather than
pre-trip route choices, and classify them into two kind of models: route choice models
in dynamic networks and sequential link choice models. We summarize dynamic
route choice models in Table 4.1.

TABLE 4.1: Dynamic route choice models

Model type Authors Network Choice set Routing
Decision 
making

Parameter estimation
(Data requirement)

(O, D, whole paths)

(O, D, whole paths)

(O, D, whole paths)

(D, link transitions)

(D, link transitions)

Static route choice model Cascetta(1996), 
Ben-Akiva and Bierlaire (1999)

Static/Deterministic Given Pre-trip Global

Route switching model Ben-Akiva(1991), 
Mahmassani and Liu(1999)

Dynamic/Deterministic Given Pre-trip+En-route Global

Routing policy model Gao(2005), Gao et al.(2010) Dynamic/Stochastic Given Pre-trip+En-route Global

Markov chain model Sasaki(1965) Static/Deterministic No enumeration En-route Myopic

Sequential route choice model Gentile and Papola(2006),
Baillon and Cominetti (2008)

Static/Deterministic No enumeration En-route Global

Recursive logit model Fosgerau et al.(2013), 
Mai et al.(2015), Mai (2016)

Static/Deterministic No enumeration En-route Global

  -scaled recursive logit model !is study Static/Deterministic No enumeration En-route Global+
Myopic

4.2.1 Route choice models in dynamic networks

In the context of route choice model, "dynamics" usually indicates that network con-
ditions are stochastic and dependent on real-time information (e.g., Ben-Akiva, De
Palma, and Isam, 1991; Abdel-Aty, Kitamura, and Jovanis, 1997; Mahmassani and
Liu, 1999; Dia, 2002; Abdel-Aty and FathyAbdalla, 2006) or uncertainty (e.g., Peeta
and Yu, 2005; Palma and Picard, 2005; Gao, Frejinger, and Ben-Akiva, 2010). Dy-
namic route choice models describe the route switching behavior from a previous
chosen or experienced route and have been applied in DYNASMART (Mahmas-
sani, 2001), DynaMIT (Ben-Akiva et al., 1997; Ben-Akiva et al., 2002) and EVAQ (Pel,
Bliemer, and Hoogendoorn, 2009). Route choice studies in networks with risks have
incorporated the concept of decision rules, including elimination by aspects (Tver-
sky, 1972), fuzzy logic (Zadeh, 1965) and cumulative prospect theory (Tversky and
Kahneman, 1992). Morikawa and Miwa, 2006 and Li, Miwa, and Morikawa, 2014
have analyzed driver’s decision process. We can see the review of travel behavior
modeling from the viewpoint of evacuation behavior in Pel, Bliemer, and Hoogen-
doorn, 2012.

However, previous dynamic route choice models deal with the route choice be-
havior in habitual networks, where drivers have spatial knowledge based on en-
vironmental experiences, regardless of whether there are risks or not. In such a
context, route choice behavior is based on global spatial cognition over networks
and described as path-based choice, which is a joint choice of the links identify-
ing a path. In this study, to describe route choice behavior not only in habitual but
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also non-habitual networks, where drivers have little experiences or network knowl-
edge, we model the dynamics of decision making within a trip rather than dynamics
of network conditions.

4.2.2 Sequential route choice models

Decision making dynamics refers to the drivers’ forward-looking decision mech-
anism. Sequential route choice models (e.g., Gentile and Papola, 2006; Baillon and
Cominetti, 2008; Fosgerau, Frejinger, and Karlstrom, 2013) assume that drivers reach
destinations through successive link choices rather than choosing jointly all the links
identifying a path. In these studies, path choice probability is described as a product
of link transition probabilities as follows:

P(σ = [a1, ..., aJ ]) =
J−1

∏
j=1

p(aj+1|aj), (4.1)

where a path σ is a sequence of links a1, ..., aJ ∈ A and A is the set of all links of the
network. This assumption that drivers choose the next link at each intersection is re-
alistic, especially in non-habitual networks. Moreover, Baillon and Cominetti, 2008
and Fosgerau, Frejinger, and Karlstrom, 2013 can consider all possible paths includ-
ing cyclic ones, which are also assumed to be important in gridlock networks. Note
that the idea of using link transition probabilities was proposed in the context of
traffic assignment (Sasaki, 1965; Bell, 1995; Akamatsu, 1996; Baillon and Cominetti,
2008) to avoid the path enumeration. Fosgerau, Frejinger, and Karlstrom, 2013 link
the idea to the infinite multinomial logit model in the context of route choice anal-
ysis, using dynamic discrete choice models (Rust, 1987). We briefly introduce the
recursive logit (RL) model proposed by Fosgerau, Frejinger, and Karlstrom, 2013
here, since our model is an extension of the RL model.

Consider a directed connected graph G = (A,N ), where A is the set of links and
N is the set of nodes. It is assumed that a driver chooses a link aj+1 in the set of
outgoing links A(aj), which maximizes the sum of instantaneous utility u(aj+1|aj)
associated with each link pair and expected downstream utility to destination link d
Vd(at+1) that is given as a value function and formulated via the Bellman equation
(Bellman, 1957) as follows:

Vd(aj) = E
[
maxaj+1∈A(aj){v(aj+1|aj; θ) + Vd(aj+1) + µε(aj+1)}

]
∀aj ∈ A, (4.2)

where v(aj+1|aj; θ) = v(xat+1|at ; θ) is the deterministic utility component, xat+1|at is
a vector of observed characteristics of the link pair (aj, aj+1) and θ is an unknown
parameter vector to be estimated. It is the main difference of the RL model from
previous sequential link choice models (e.g., Gentile and Papola, 2006; Baillon and
Cominetti, 2008) that it allows to estimate its parameters by providing an interpreta-
tion of the model as a dynamic discrete choice model. The random term ε is assumed
to be an i.i.d extreme value I with zero mean, the dummy link for the destination d
has no successor, and the union of the link set and the dummy link is denoted as
Ã = A∪ d. The probability of choosing a link aj+1 given state aj is:
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p(aj+1|aj) =
e

1
µ{v(aj+1|aj)+V(aj+1)}

∑a′j+1∈A(aj) e
1
µ

{
v(a′j+1|aj)+V(a′j+1)

} , (4.3)

which is the multinomial logit model. Path probability in the RL model is also given
by Equation (4.1). By the assumption of the random term distribution, Equation (4.2)
is re-formulated as a logsum:

Vd(aj) =

{
µ log ∑aj+1∈A δ(aj+1|aj)e

1
µ {v(aj+1|aj)+Vd(aj+1)}, aj ∈ A

0, aj = d,
(4.4)

where δ(aj+1|aj) is an indicator that equals one if aj+1 ∈ A(aj) and zero otherwise.
Since the destination link d has no outgoing link, Vd(d) is set to zero.

In order to calculate the probability of link choices, the Bellman equation must
be solved, and Equation (4.4) is transformed by taking the exponential,

e
Vd(aj)

µ =

{
∑aj+1∈A δ(aj+1|aj)e

1
µ {v(aj+1|aj)+Vd(aj+1)}, aj ∈ A

1, aj = d.
(4.5)

Moreover, the matrix z(|Ã| × 1) and M(|Ã| × |Ã|) are defined with entries

zaj = e
Vd(aj)

µ , Majaj+1 = δ(aj+1|aj)e
v(aj+1 |aj)

µ (4.6)

The value functions are the solutions to the following equation:

z = Mz + b (4.7)

where b(|Ã| × 1) is a vector with zero value for all states except for the destination,
where it equals 1. The value functions are evaluated by solving the system of linear
Equation (4.7), and in Fosgerau, Frejinger, and Karlstrom, 2013, it is solved using the
inverse matrix of I − M.

The RL model describes the decision-making dynamics, which is a sequential
and forward-looking decision, by incorporating the value function into the link util-
ity function. However, it assumes global spatial cognition similar to previous pre-trip
route choice models, because it is known that the path probabilities of the RL model
correspond to those of the pre-trip MNL model. In other words, drivers choose routes
with perfect information of all states over networks.

This study focuses on the parameter of the discount factor in dynamic discrete
choice models (e.g., Rust, 1987). The review of studies of dynamic discrete choice
models can be found in Cirillo and Xu, 2011, and the models describe the sequen-
tial decision in the time axis. In the context of dynamic discrete choice models, the
expected future utility is described as a "discounted" utility, because decision mak-
ers regard the future states as uncertain and do not have perfect information. We
assume the route choice behavior in non-habitual networks is similar to such a sit-
uation. In the context of route choices, the uncertainty of the future state means
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D

D

FIGURE 4.2: Decision making dynamics with different sequential dis-
count rates

the ambiguity or lack of spatial knowledge, and a driver cannot evaluate utilities
of distant space with the same weight with the utility of current links. It is natural
that in extraordinary networks, such as urban gridlocks drivers find ways to get out
of congestions anyway. In this study, we define the discount factor in the dynamic
discrete choice model as a "sequential discount rate", which is the parameter that
represents decision-making dynamics, and incorporate it into the sequential route
choice models.

4.3 β-scaled recursive logit model

In this section, we present the concept of a sequential discount rate and the formula-
tion of a route choice model referred to as the β-scaled recursive logit (β-SRL) model.
Our model is an extension of the RL model that is based on sequential link choices.
Note here that we model the route choice behavior in static and deterministic net-
works to clarify and emphasize the impact of the sequential discount rate.

4.3.1 Sequential discount rate

We first present the concept of sequential discount rate β. It is a generalization of
drivers’ decision-making dynamics and also a representation of the degree of spatial
cognition of networks as a parameter. The sequential discount rate β is assumed to
be between zero and one, and can be estimated together with other parameters θ. A
large value of β means that drivers evaluate the future expected utility with great
weight. Figure 4.2 shows the difference of drivers’ decision making with different β
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in the context of a sequential route choice model. When β is one, drivers evaluate
the expected utility of forward space V and the instantaneous utility of the next link
v with equal weights, that is, route choice behavior depends on global decision over
networks. On the other hand, when β is zero, drivers myopically choose the next
link based only on its instantaneous utility v. In this case, the utility and probability
of choosing link aj+1, given a state link aj are respectively:

u(aj+1|aj) = v(aj+1|aj) + µε(aj+1) (4.8)

and

p(aj+1|aj) =
e

1
µ v(aj+1|aj)

∑a′j+1∈A(aj) e
1
µ v(a′j+1|aj)

. (4.9)

Equation (4.9) is the transition probability of first-order Markov chain models and
indicates that drivers have only visible link conditions as the information for de-
cision making. We define this model as a myopic link choice (MyL) model in this
study.

4.3.2 Model formulation

Using the sequential discount rate, we re-formulate the value function of Equation
(4.2) as follows:

Vd(aj) = max
aj+1∈A(aj)

E

[
∞

∑
t=j

βt−ju(at+1|at; θ)

]

= E

[
max

aj+1∈A(aj)
{v(aj+1|aj; θ) + βVd(aj+1) + µε(aj+1)}

]
, (4.10)

where t ∈ N0 is the number of decision-making from the origin link and β (0 ≤ β ≤
1) is the sequential discount rate of the value function. The transition probability
from link aj to aj+1 is given by the multinomial logit model,

p(aj+1|aj) =
e

1
µ{v(aj+1|aj)+βV(aj+1)}

∑a′j+1∈A(aj) e
1
µ

{
v(a′j+1|aj)+βV(a′j+1)

} . (4.11)

The path probability of the β-SRL model is also given by Equation (4.1).

4.3.3 Solving the Bellman equation

The Bellman equation (4.10) is transformed by taking a logsum and exponential form
in the same way with Equation (4.4) and (4.5),

e
Vd(aj)

µ =

{
∑aj+1∈A δ(aj+1|aj)e

1
µ {v(aj+1|aj)+βVd(aj+1)}, aj ∈ A
1, aj = d.

(4.12)



4.4. Illustrative examples 63

Based on the recursive logit model, we define the matrix z(|Ã| × 1) and M(|Ã| ×
|Ã|) with the entries of Equation (4.6). In our case, the value functions are the so-
lutions to the following system of non-linear equations with the sequential discount
rate,

zaj =

{
∑aj+1∈A Majaj+1

(
zaj+1

)β
, aj ∈ A

1, aj = d.
(4.13)

This equation is written in matrix notations as:

z = MX(z) + b, (4.14)

where X(z)(|Ã| × |Ã|) is the matrix with entries X(z)aj =
(

zaj

)β
. We solve Equa-

tion (4.14) by iterative computations until the value function arrives a fixed point
(the use of the same solution method is found in e.g., Mai, Fosgerau, and Frejinger,
2015). We first initialize the vector z(0) and then update as z(1) = MX(z(0)) + b. If z
converges, i.e., it satisfies |z(n+1) − z(n)| < γ where γ is a convergence tolerance, we
finish the iteration, and otherwise, we update z using Equation (4.14). As mentioned
in Fosgerau, Frejinger, and Karlstrom, 2013, it depends on the balance between the
network structure and the size of the instantaneous utilities v(aj+1|aj). Cyclic struc-
tures in networks may cause the divergence of the value functions. In this paper,
this is discussed in more detail in Section 4.4.3.

Note here that this model corresponds, as special cases, to the recursive logit
model when β equals one and to the myopic link choice model when β equals zero.
Therefore, the proposed model can be assumed as a generalized version of these pre-
vious models. We also note that we do not consider the correlation structure among
path alternatives, which is addressed in e.g., Mai, Fosgerau, and Frejinger, 2015 and
Mai, 2016, though our model can be developed in the same way with the literatures.
In this paper, we would like to focus on the effect of the sequential discount rate.

4.4 Illustrative examples

In this section, we present illustrative examples to show the difference between our
model and previous route choice models. We use simple networks, where the only
attribute in the instantaneous utility v(a) is the link cost, and its parameter is set
θcost = −1 for simplicity.

4.4.1 Path probabilities

The first example uses the network of Figure 4.3(a), and we have three alternative
paths in Figure 4.3(b): [1,2,4] (path 1), [1,3,4] (path 2), and [1,3,2,4] (path 3). The
number on each link is the link cost. We denote the path probabilities as P1, P2 and
P3, respectively.

In order to compare the path probabilities, given by the model incorporating the
sequential discount rate, to previous route choice models, we calculated the prob-
ability of the pre-trip MNL model, the recursive logit model (Fosgerau, Frejinger,
and Karlstrom, 2013), the MyL model defined in the previous section, and the β-SRL
model. Table 4.2 shows the results. The probabilities of MNL, RL and β-SRL with
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FIGURE 4.3: (a) Example network and (b) path alternatives

β = 1 give the same results; P1 and P2 are equivalent and higher than P3. Since path-
based costs of route 1 and 2 are lower than that of route 3, these models reflect the
global decision making of travelers. As proven in Akamatsu, 1996 and mentioned in
Fosgerau, Frejinger, and Karlstrom, 2013, the path probabilities of the RL model cor-
respond with those of the path-based MNL model if the universal choice set, which
is the set of path 1, 2 and 3 in this case, can be defined. This result indicate that
those of the β-SRL model with β = 1 are also equivalent. On the other hand, the
result given by β-SRL with β = 0.5 shows the difference between P1 (0.206) and P2
(0.397), and in the case of MyL and β-SRL with β = 0, P3 is the highest of all routes.
The smaller β becomes, the more link 1-3 and 3-2 are likely to be chosen at node 1
and 3, respectively, and as a result of sequential decisions, the probability of route 3
becomes higher. While previous path-based route choice models could not describe
such a myopic decision, the model proposed in this study generalizes the decision-
making dynamics as the parameter of the sequential discount rate, and it includes
the RL and the MyL models as special cases, as the results show.

To analyze the impact of β on travelers’ route choice behavior in detail, we report
the relationship between β and path probabilities in Figure 4.4. Despite that the
path-based costs of route 1 and 2 are equivalent, P2 is always equal to or higher
than P1, because there is difference between the costs of links 1-2 and 1-3, which
are connected with link o. It is realistic that the difference of the costs of the first
links changes the selectivity of routes; therefore, the result represents a contribution
of our model to previous route choice models, which evaluate the probabilities of
route 1 and 2 equally. Moreover, in Figure 4.4, we show the fluctuations of the three
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TABLE 4.2: Comparison of path choice probabilities given by several
route choice models applied to the example in Figure 4.3

β P1 P2 P3
MNL - 0.422 0.422 0.155
RL - 0.422 0.422 0.155
β-SRL 1 0.422 0.422 0.155
β-SRL 0.5 0.206 0.397 0.397
β-SRL 0 0.119 0.237 0.644
MyL - 0.119 0.237 0.644
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FIGURE 4.4: Path probabilities of the three path alternatives of Figure
4.3

path probabilities when β changes. With respect to β, P2 monotonically increases
and P3 monotonically decreases. The figure indicates that β has a large impact on
not only path probabilities but also their ranking: P3 > P2 > P1 when 0 ≤ β < 0.5,
P2 > P3 > P1 when 0.5 ≤ β < 0.75 and P2 ≥ P1 > P3 when 0.75 ≤ β ≤ 1. The fact
that P3 is the largest of the three suggests that most of travelers make decisions at
each node and choose the links with smaller instantaneous costs; link 1-3 at node 1,
link 3-2 at node 3, and link 2-4 at node 2. Assuming that link costs mean the level
of congestion, it seems to be likely that travelers choose links myopically in order
to avoid the congestion. This result indicates that β-SRL model can describe both a
myopic decision and a global decision in route choice behavior.

In order to examine the mechanism of path probability change, we show the
values of Vd(a) (Figure 4.5a), βVd(a) (Figure 4.5b) and v(a) + βVd(a) (Figure 4.5c)
of each link a ∈ [o, 1-2, 1-3, 2-4, 3-2, 3-4]. V and βV of link 2-4 and 3-4 are always
log(exp(0)) = 0 because the unique outgoing link of these links is link d. In this case,
the deterministic component of link transition utility v depends on only link cost;
therefore, the value functions of links that share the sink node are equal to each other
in the network of Figure 4.3, where V(1− 2) = V(3− 2). The link choice probability
of the β-SRL model is given by exp(v + βV)/ ∑ exp(v + βV) and dependent on (v +
βV), which is the sum of instantaneous utility v and the product of the sequential
discount rate and value function βV. Comparison between (v + βV) of link 1-2 and
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FIGURE 4.5: Value functions of links

1-3 indicates that the value of link 1-2 is always higher than that of link 1-3, but the
difference becomes gradually smaller as β becomes large. On the other hand, the
order of (v + βV) of link 3-2 and 3-4 reverses at β = 0.5, and the reverse causes the
inversion of the order of P2 and P3.

The results of path probabilities demonstrates that the sequential discount rate in
the β-SRL model reflects the decision-making dynamics. The smaller β is, the more
important myopic decision (instantaneous utility) is regarded. In contrast, the larger
β is, the more significant expected downstream utility is. It also can be assumed
that the sequential discount rate indicates the spatial heterogeneity of link cost cog-
nition, because drivers consider future expected utility with small weight when the
sequential discount rate is small. Moreover, the β-SRL model can describe the global
decision as well as previous models, since the β-SRL model includes the RL model
as a special case.

4.4.2 Link flows

In order to analyze the effect of the sequential discount rate on prediction of traf-
fic flow, we report on the results of traffic assignment, using a simple grid network
in Figure 4.6. We calculated link flows using the assignment method based on link
transition probabilities, which are detailed in Sasaki, 1965 and Akamatsu, 1996. Pan-
els in the top row indicate the three network settings used for assignments, where
the number on each link is the link cost. Network 2 and 3 are the networks with
some high cost links and low cost links compared to network 1, respectively. The
lower part in Figure 4.6 shows the assignment results that are based on link transi-
tion probabilities given by the β-SRL model with different sequential discount rates
(β = 0, 0.5, 1), where the line weight indicates the link flow. In this example, we set
the OD flow to 1000. In the case of β = 1, the assignment results reflect the effect
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FIGURE 4.6: Assignment results given by the β-SRL model with dif-
ferent β

of the link cost changes, where the links with cost 4 have little flow in network 2.
The links with zero cost have large flow in network 3, because when β = 1, travelers
consider path-based cost from origin to destination, rather than separated link costs.
The smaller β becomes, the more flow we can see on links with cost 4 in network 2.
Moreover, when β = 0, the assignment results are the same regardless of network
settings in these examples. When β = 0, travelers myopically choose links. There-
fore, larger flows are assigned to high cost links, which drivers should ordinarily
avoid to travel in network 2, and smaller flows are assigned to zero cost links in net-
work 3. The fact that larger flows are assigned to high cost links shows that myopic
route choice decisions can worsen the congestion of networks, and it may suggest
the mechanism of gridlock occurrence.

We conclude that the sequential discount rate has a large impact on predicted
link flows, and existing route choice models with global decision may cause erro-
neous predictions in terms of network flow, and, therefore, the estimation of β using
real data is useful for real-time traffic management.
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4.4.3 Cyclic paths

The advantage of sequential route choice models compared to general route choice
models is that we do not need path enumeration and can consider all possible paths
including cyclic paths. In the case of gridlock networks, where route choice behavior
is confusing, the generation of cyclic paths, which pass the same node more than
once, is an important issue. Cyclic paths are generally assumed to be chosen, not
under global decisions, but myopic decisions in route choice behavior. In order to
analyze the impact of the sequential discount rate on the selectivity of cyclic paths,
we simulated the network of Figure 4.7(1). Instantaneous utility associated with the
link pair (aj, aj+1) is given by v(aj+1|aj) = θcostxaj − 10xaj+1|aj

, where xaj is the link
cost, and xaj+1|aj

is the u-turn dummy variable that equals one, if the source node of
link aj corresponds to the sink node of link aj+1, and zero otherwise.

We first the coefficient of link costs θcost to −2. With respect to every β, we have
100 sets of 1000 path observations, and we present the maxima, the minima and the
means of the ratio of cyclic paths, in Figure 4.8. When β is large (close to one), there
are few cyclic paths because travelers choose routes with global decision making.
Maxima, minima and means are zero when β = 1 and 0.9. This result indicates
that no cyclic path is generated by the RL model, which is the special case of β-SRL
when β = 1, in this network. As we decrease β, we first observe cyclic paths when
β = 0.8: the maximum equals 0.001. Further, there are sets that contain no cyclic path
(the minima are equal to zero), when β is equal to or greater than 0.6. The smaller
β becomes, the more cyclic paths are observed, and when β = 0 the maximum is
0.253, the minimum is 0.200 and the mean of ratio of cyclic paths is 0.225.

In order to examine the relationship between the values of parameters and the
generation of cyclic paths, we observe 10000 paths for each parameter set of θcost
and β and report the maximum number of cyclic structures in a path among the
observations in Table 4.3. When the absolute values of both θcost and β are large,
no cyclic path is contained in the 10000 observations, where the results are shown
as 0 in Table 4.3. On the other hand, when the absolute value of θcost or that of β is
small, a path that includes two figures of cyclic structures is observed. Paths with a
number of cyclic structures are observed, especially when β is close to one and θcost
is close to zero. In the case of β = 1 and θcost = −0.1, an observed path includes
6398 cyclic structure, and in the case of β = 1 and θcost = 0, Equation (4.14) has no
solution and we cannot observe paths.

When β = 1, the β-SRL model corresponds to the RL model. The condition of
solution existence of the RL model is that the incidence matrix M is a convergence
matrix, i.e., the following equation is satisfied:

ρ(M) = max
h

{|λh|} < 1, (4.15)

where λh is the eigenvalue and ρ(M) is the spectral radius of matrix M. The matrices
M with θcost equal to or smaller than −0.1 satisfy Equation (4.15); however, when
β = 0, the spectral radius of M is 1.189, which is larger than one. In this case, the
value functions diverge due to the cyclic structures with large utilities. When β is
smaller than one, Equation (4.14) has the solution even though Equation (4.15) is
not satisfied, in the network of Figure 4.8(1). This is because the value functions are
discounted by the sequential discount rate β and do not diverge.

These results demonstrate that the sequential discount rate, which describes de-
cision making dynamic in route choices, has a large impact on the selectivity of cyclic
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paths. Especially in non-habitual networks, such as gridlock networks, it is thus im-
portant that the proposed model can simulate the generation of cyclic paths.

4.5 Parameter estimation

In this section we present parameter estimations given by the β-SRL model. First, we
discuss the estimation methods for the β-SRL model, and then we present validation
results using simulated route choice data. Finally, we present the estimation results
using real observations.
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TABLE 4.3: The maximum number of cyclic structures in a path of
10000 observations

sequential discount rate β
θcost 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
-2 0 0 0 3 4 6 10 22 22 28 30

-1.9 0 0 3 4 5 8 12 20 22 30 32
-1.8 0 0 1 4 7 12 20 26 30 29 30
-1.7 0 2 1 8 4 12 16 22 28 34 30
-1.6 0 0 3 4 7 12 14 20 28 28 34
-1.5 0 1 1 4 7 11 16 22 28 28 28
-1.4 0 3 4 5 8 16 20 22 32 30 34
-1.3 1 3 4 4 16 14 22 30 24 30 44
-1.2 0 3 4 8 10 12 16 20 26 24 34
-1.1 1 4 7 6 8 16 22 24 26 28 34
-1 3 4 6 8 12 18 26 24 28 28 32

-0.9 3 4 7 8 11 20 36 26 24 32 32
-0.8 4 10 8 11 12 18 24 22 38 30 32
-0.7 4 8 8 14 20 26 30 28 38 42 30
-0.6 5 10 12 18 16 24 20 26 24 30 32
-0.5 7 10 16 16 22 26 32 32 34 36 40
-0.4 16 20 18 20 28 30 32 40 32 30 32
-0.3 23 24 32 32 40 44 30 32 38 28 34
-0.2 44 50 42 36 40 36 32 26 28 30 32
-0.1 6398 80 56 54 38 38 46 30 28 28 28

0 - 216 80 46 42 32 44 48 30 34 24
*-: The Bellman equation has no solution.

4.5.1 Maximum likelihood estimation

Parameters of the β-SRL model are estimated by the method of maximum likelihood
estimation. The log-likelihood function LL is defined as follows:

LL(θ, β) = ln
N

∏
n=1

Pn(σn = [a1, ..., aJn ])

=
N

∑
n=1

Jn−1

∑
j=1

ln pn(aj+1|aj)

=
N

∑
n=1

Jn−1

∑
j=1

1
µ
(vn(aj+1|aj) + βVd

n (aj+1)− Vd
n (aj)), (4.16)

where N is the number of paths, and Jn is the number of links included in path
n. As Equation (4.16) shows, the link choice probability p depends on the value
function V, which has a recursive structure as shown in Equation (4.2). That is, p
includes an endogenous variable, and we have to solve the fixed point problem of
the parameters. In the field of economics, several estimators for dynamic discrete
choice models have been proposed. One can see the reviews in Aguirregabiria and
Mira, 2010. Most methods are two-step iterative solutions, e.g., the nested fixed
point (NFXP) algorithm (Rust, 1987), and the nested pseudo likelihood (NPL) al-
gorithm (Aguirregabiria and Mira, 2002). Recently, Su and Judd, 2012 proposed a
constrained optimization method for structural estimation, which is referred to as
the mathematical programming with equilibrium constraints (MPEC) approach.

In order to estimate β, we adopt a two-step iterative method, which includes the
first step for maximization of the log-likelihood function and the second step is for
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calculating the value functions, because the estimation of β includes a problem re-
garding parameter identification in the case of simultaneous estimation, such as the
MPEC approach. NPL does not solve the fixed point problem of the value functions
in the second step. Therefore, it is useful when the value functions are costly to eval-
uate. However, in the case of dynamic sequential link route choice models, the first
step takes much more time because the number of links is usually huge. In this study,
we use another approach, which is also based on two-step procedures: 1) set m = 0
and initialize the value functions V(0) and the parameters θ(0), β(0), 2) maximize the
log-likelihood function and solve the parameters θ(m+1), β(m+1), 3) solve the Bellman
equation and update the value functions V(m+1), and 4) finish the algorithm if the
parameters and the value functions satisfy |θ(m+1) − θ(m)| < ξ, |β(m+1) − β(m)| < ξ ′,
and |V(m+1) − V(m)| < ξ ′′, where ξ, ξ ′ and ξ ′′ are the convergence tolerances, return
step 2 otherwise.

4.5.2 Simulation analysis

In order to confirm the estimability of parameters in the β-SRL model, we present
a simulation analysis using the cyclic network of Figure 4.7(2) and simulation data
is generated on the five conditions in Table 4.4. The instantaneous utility associated
with the link pair (aj, aj+1) is given by v(aj+1|aj) = θcostxaj − 10xaj+1|aj

, where xaj is
the link cost and xaj+1|aj

is a u-turn dummy variable that equals one, if the source
node of link aj corresponds to the sink node of link aj+1, and zero otherwise. In this
case, θ and β are estimated.

Table 4.5 shows the estimation results of the β-SRL model using simulation data.
Note that we do not estimate β directly, but γ, where the relationship between them
is β = exp(γ)/(1 + exp(γ)), and evaluate β using γ. For this reason, the table have
no information of the standard errors of β.

Regarding the estimated θ, the difference from the true value is the maximum
in dataset 5 (0.060), and in all datasets, we get the estimates close to this true value.
We also can estimate γ and evaluate β, and the results show close values to each
true value. In the case of dataset 1, the difference between estimated β and true β is
0.070 and larger than the other datasets. All estimates of θ and γ are not significantly
different from their true values at the 5% significance level.

4.5.3 Case study

We used data of vehicle trajectories in the network of the Tokyo Metropolitan area,
collected by the Vehicle Information and Communication Systems Center, which is a typ-
ical corporation collecting and providing driver’s road traffic information. The data
includes vehicle trajectories of taxis, as sequences of consecutive geo-referenced co-
ordinates and the corresponding timestamps, which are typically recorded every
few seconds. It is important to note that this emerging sensor technology, using taxis,
enabled us to observe trajectories anytime, therefore the data includes the traces on
March 11, 2011, which is the day of the Great East Japan Earthquake. We use the
data on that day, and the day a week before (March 4, 2011) for comparison. They
include 33,858,752 locations and 872,070 trips. We here briefly introduce a summary
of the Great East Japan Earthquake.

At 14:46 on March 11, 2011, a magnitude-9 earthquake shook eastern Japan.
The Tokyo Metropolitan area also experienced the large earthquake, the through-
put of the entire transportation network declined. The Metropolitan Expressway
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TABLE 4.4: Dataset used in simulation analysis

utility function parameters Travelers
Set v(aj+1|aj) θ β N
1 θcostxaj − 10xaj+1|aj

-2 0.9 2000
2 θcostxaj − 10xaj+1|aj

-2 0.7 2000
3 θcostxaj − 10xaj+1|aj

-2 0.5 2000
4 θcostxaj − 10xaj+1|aj

-2 0.3 2000
5 θcostxaj − 10xaj+1|aj

-2 0.1 2000

*xaj : Link cost, xaj+1|aj
: U-turn dummy

TABLE 4.5: Estimation results of the β-SRL model using simulation
data

θ β = exp(γ)/(1 + exp(γ))
Set Estimate

(θ)
Std. err. t-value∗1 Estimate

(γ)∗2
Std. err. t-value∗1 β

1 -2.012 0.067 -0.178 3.477 1.046 1.223 0.970
2 -2.031 0.065 -0.473 0.890 0.109 0.394 0.709
3 -2.005 0.060 -0.086 0.026 0.067 0.381 0.506
4 -1.969 0.056 0.547 -0.827 0.083 0.248 0.304
5 -2.060 0.058 -1.050 -2.250 0.198 -0.267 0.095
*1: t-value is reported with respect to the true value.
*2: In order to satisfy 0 < β < 1, γ in β = exp(γ)/(1 + exp(γ)) is estimated instead of β.

was closed and all railways stopped. As a consequence of the concentration of all
demand on road traffic, the network was heavily congested. It is the first time that a
Japanese city experienced the gridlock phenomenon.

We report the mapping of the average link speeds at each time period (14:00-
15:00, 15:00-16:00, 16:00-17:00, 17:00-18:00) on March 11, 2011 in Figure 4.9. At 14-15,
most links were ordinary and link speeds were equal to and faster than 30km/h,
over the network, and we can see a little congestion on narrow streets in the city
center. However, after the earthquake occurred, congestion started to spread from
the right side of the figure, where the density of the network was high, at 15-16.
In the left side area with low network density, we can observe many green links
with 20-30 km/h, but arterial roads were already congested, because a number of
people started to go home from the city center to the suburbs. At 16-17, the link
speeds declined over the network and most links were under 20km/h. Then at
17-18, especially surrounding the Imperial Palace (the empty spot at the center of
the figure), the links under 10km/h connected with each other, and the congestion
spread widely. As a result of the congestion propagating from one link to the next,
the system achieved minimal throughput. This state can be referred to as a gridlock.

Figure 4.10 shows the variation of the average number of right or left turns per
vehicle per five kilometers in time series: the broken line is for March 4 and the solid
line is for March 11. Before 14:46, which is the time when the earthquake occurred
on March 11, 2011, the two lines are consistent; however, after the time, the number
of direction changes on March 11 rapidly increases, while that on March 4 gradu-
ally does not significantly change during 14-17 and decreases afterward. This result
suggests that in the disaster network, the mechanisms of route choice behavior can
dynamically fluctuate as the network situation changes. We guess that the myopic
decision causes the increase of direction changes after the earthquake, and examine
the route choice mechanisms through estimating parameters of the β-SRL model.
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FIGURE 4.9: Link speed distribution at each time on the day of the
Great East Japan Earthquake in the Tokyo metropolitan area network

Note that a multifaceted analysis of route choice behavior in the gridlock net-
work using the same data is shown in Oyama et al., 2016.

In order to examine the route choice mechanism in such a situation, we estimated
the β-SRL model for each time period on each day. For estimating parameters, we
extracted a smaller one of the network in Figure 4.9, which includes 2724 links, and
we used all of samples, which are the number of observations of link choices, at ev-
ery period. The average number of destinations for periods is 110.5. More detailed
characteristics of observations used for estimating parameters are reported on Ta-
ble 4.6. In this case study, we define the deterministic component of instantaneous
utility function as follows:

v(aj+1|aj) = θTTTTaj+1 + θRTRTaj+1|aj
. (4.17)

where TTaj is the travel time, in minutes, of link aj, which is calculated by the length
divided by the average link speed. The average link speed is calculated at each time
using processing data with a map-matching algorithm, or it is set via the average
over the network in the corresponding zone (as the second-order grid square), if the
link has no observation. RTaj+1|aj

is a right turn dummy variable that equals one, if
the turn from link aj to aj+1 is a right turn with an angle between 40◦ and 177◦ com-
pared to the direction of the link aj, and zero otherwise. We focused on right turns
because in Japan people drive their cars in the left lane and are reluctant to turn
right. Note that this study does not include the link size (LS) attribute, which is pro-
posed by Fosgerau, Frejinger, and Karlstrom, 2013 to consider the overlapping effect
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TABLE 4.6: Characteristics of observations used for estimation at each
time period

Date Time of day No. of paths No. of
samples∗

No. of
destinations

CPU-time [s]

March 4 14-15 309 5043 132 393.1
15-16 337 5469 133 380.2
16-17 287 4634 114 340.9
17-18 312 4353 121 326.4

March 11 14-15 256 4493 99 306.2
15-16 307 4864 126 294.5
16-17 184 2728 82 172.8
17-18 138 2108 77 161.0

Total 2130 33692 884 2375.1
Average 266.25 4211.5 110.5 296.9
* It is the number of observed link choices, and all observations are used as samples for estimation.

among path alternatives. The LS attribute is based on the given parameters, but
we do not have the prior information of the parameters in extraordinary networks.
Since we aim at comparing the estimation results assuming that the parameters can
change in different time periods, we do not include the LS attribute that is based
on the given parameters. In this study, we focus on examining the effect and the
difference of the discount factor rather than pursuing goodness-of-fit of the model.

We report the parameter estimation results in Table 4.7 and Table 4.8. We can
estimate the parameters of the β-SRL model at all time periods, and the average
estimation time for a period was 296.9 seconds. The computational time of each es-
timation is reported on Table 4.6, and it depends on the number of samples. Every
computational time is sufficiently short for estimating at every one hour, which in-
dicates the applicability of the model to frameworks of traffic management, as we
will discuss in the last section.

The reported t-value is with respect to zero for θTT and θRT and with respect to
one for β. All estimates are highly significant, and all estimated βs are significantly
different from one. Signs and magnitudes are also reasonable, and there are differ-
ences among estimated values: θTT is estimated between −2.976 and −1.069, and
θRT is between −1.162 and −0.991. The result that β is estimated between 0.176 and
0.463 suggests the possibility for both ordinary and extraordinary situations that
route choice behavior is not necessarily based on global decisions.

In order to examine the temporal change of each parameter, we present the plots
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TABLE 4.7: Estimation result of the β-SRL model using the data on
March 4, 2011

Date March 4, 2011
Time of day 14:00-15:00 15:00-16:00

Estimates Std. err. t-value∗ Estimates Std. err. t-value
θTT -2.488 0.115 -21.69 -2.498 0.228 -10.97
θRT -0.991 0.065 -15.13 -1.052 0.071 -14.75
β 0.455 0.037 -14.63 0.439 0.031 -18.12
LL -2884.8 -3141.1

Time of day 16:00-17:00 17:00-18:00
Estimates Std. err. t-value Estimates Std. err. t-value

θTT -2.976 0.152 -19.57 -2.347 0.138 -17.05
θRT -1.100 0.075 -14.68 -1.089 0.074 -14.64
β 0.463 0.036 -15.11 0.424 0.043 -13.34
LL -2530.5 -2438.7
* We report t-value for θTT and θRT with respect to zero and that for β with respect to one.

TABLE 4.8: Estimation result of the β-SRL model using the data on
March 11, 2011

Date March 11, 2011
Time of day 14:00-15:00 15:00-16:00

Estimates Std. err. t-value∗ Estimates Std. err. t-value
θTT -2.698 0.125 -21.65 -1.646 0.108 -15.28
θRT -1.088 0.080 -13.62 -1.121 0.072 -15.54
β 0.408 0.042 -13.97 0.265 0.044 -16.54
LL -2554.9 -2807.1

Time of day 16:00-17:00 17:00-18:00
Estimates Std. err. t-value Estimates Std. err. t-value

θTT -1.524 0.134 -11.36 -1.069 0.120 -8.89
θRT -1.162 0.097 -11.97 -1.073 0.107 -9.99
β 0.176 0.066 -12.41 0.249 0.082 -9.16
LL -1558.6 -1213.5
* We report t-value for θTT and θRT with respect to zero and that for β with respect to one.



76Chapter 4. Dynamic sequential route choice model for dynamic network analysis

Time of day

(a) (b)

(c)

Time of day

Time of day

Estimation results

March 4, 2011 (a normal day)

March 11, 2011 (the disaster day)

0

0.2

0.4

0.6

0.8

1.0

14-15 15-16 16-17 17-18

0

0.2

0.4

0.6

0.8

1.0

14-15 15-16 16-17 17-18

0

0.2

0.4

0.6

0.8

1.0

14-15 15-16 16-17 17-18

FIGURE 4.11: Plots of estimated parameters. (a) The ratio of the pa-
rameter of travel time, (b) the ratio of the parameter of right turn

dummy and (c) the estimated value of the discount factor.

of estimated parameters in Figure 4.11. For the sake of comparison, we show the
ratios of parameters, θTT/(θTT + θRT) and θRT/(θTT + θRT), in Figure 4.11(a) and (b),
respectively. Figure 4.11(c) shows the change of β. The white and black plots are the
estimation results on March 4 (normal day) and March 11 (disaster day), respectively.

θTT/(θTT + θRT) on the normal day is the largest at 16-17, when people start
returning home; however, the difference of the value among time periods is small.
It suggests that the ratio of the parameters is stable on the normal day. On the other
hand, θTT/(θTT + θRT) on the disaster day shows a different trend from the normal
day. At 14-15 on the disaster day, the value is almost same with that on the normal
day (0.715 vs 0.713), and it decreases systematically as time goes by. The change
indicates that after the earthquake occurrence at 14:46, as the congestion becomes
worse, they cannot evaluate the travel time appropriately.

We can see the opposite dynamics between estimated θRT/(θTT + θRT) on the
normal and the disaster day. On the disaster day, the value increases as time goes by,
while it barely changes on the normal day. At 17-18 on the disaster day, θRT/(θTT +
θRT) is the largest on the day and larger than θTT/(θTT + θRT). That is, the cost of
right turns becomes very high because of urban gridlock.

Regarding β, the estimated values on the disaster day are smaller than those on
the normal day at all time periods. This result suggests that the earthquake occur-
rence makes drivers’ decision myopic. At 14-15 on the disaster day, β shows the
value close to β at 14-15 on the normal day. After the occurrence of the earthquake,
β decreases as time goes by, and drivers have to choose routes myopically because
the congestion has reached levels never experienced before. Afterwards β becomes
the smallest at 16-17, just before the urban gridlock incidence. The result suggests
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that the myopic decisions of drivers may worsen the network situation and cause
gridlock networks.

Finally, we examined the prediction performance of the estimated β-SRL model
at every period, ,comparing to the RL model, using a cross validation approach (Mai,
Fosgerau, and Frejinger, 2015). We divide the sample of observations at each time
period t I t into two sets by drawing observations at random, and the set that has 80
% of observations I t

e is used for estimating the models and the set that has 20 % of
observations I t

p is used for evaluation of the following likelihood loss:

errt =
1

K − Kt
f

K−Kt
f

∑
k=1

− 1
|I t

k,p|
∑

n∈I t
k,p

Jn−1

∑
j=1

ln pn(aj+1|aj; θ̂t
k, β̂t

k)

 , (4.18)

where K is the number of trials, and Kt
f is the number of failure of estimation among

K trials. θ̂t
k and β̂t

k are the estimated parameters of the models using the sample of
I t

k,e. We set K = 40 and generate holdout samples of the same size by reshuffling
the original sample for all time periods. Table 4.9 reports the results. The β-SRL
model can be estimated at all time periods, i.e., Kt

f = 0, ∀t, while in the case of the RL
model estimation results cannot always be obtained, as we discussed in Section 4.4.3.
Moreover, the β-SRL model perform better than the RL model at all time periods.
The loss of the β-SRL model is the largest at 17-18 on March 11 and the smallest at
16-17 on March 4, but there is not large difference among the averages of test error
value of the eight β-SRL models. The result indicates that the change of the discount
factor does not have a large effect on the out-of-sample fits of the model.

TABLE 4.9: Average of test error values over 40 holdout samples

errt (K − Kt
f )∗

Time of day 14-15 15-16 16-17 17-18
March 4 β-SRL 0.576 (40) 0.573 (40) 0.543 (40) 0.557 (40)

RL 0.873 (10) 0.640 (5) 0.689 (2) 0.586 (22)
March 11 β-SRL 0.572 (40) 0.581 (40) 0.567 (40) 0.587 (40)

RL - (0) 0.832 (12) 0.760 (1) - (0)

*K − Kt
f is the number of completion of estimation.

4.6 Conclusions and discussion

This paper proposed the discounted recursive logit (β-SRL) model, which incorpo-
rates the discount factor for capturing the diversity of decisions under congestions.

Through some illustrative examples using simple networks, we presented the
properties of the β-SRL model in terms of path probability and link flow prediction,
and showed the differences from several existing route choice models. The discount
factor reflected the effect of links that travelers pass early and had a large impact on
the order of path probabilities of routes. It also affected network assignment results,
and we concluded that the evaluation of appropriate discount factors was important
for precise demand forecasting. Moreover, we mentioned the selectivity of cyclic
paths, which have not been discussed in detail in previous works and may cause the
divergence of expected utilities, and showed the effect of the balance between the
parameter of link cost and the discount factor.
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We then presented estimation results using both simulation data and real data,
including GPS traces in the time of the Great East Japan Earthquake. The estimated
parameters using real data showed that the difference of route choice mechanisms
between the normal day and disaster day, and among the time periods. On the disas-
ter day, all parameters systematically changed as time went by after the earthquake
occurrence, and the estimation results of the discount factor indicated myopic route
choice behavior in gridlock networks. We conclude that the β-SRL model enable us
to examine the decision-making dynamics in route choices by estimating appropri-
ate discount factors.

Regarding the limitations in this paper, we mention the characteristics of probe
vehicle data of taxis. In the first place, it is difficult to detect trips from the sequence
of continuous GPS data because the stop time of taxis is often very short. We de-
fined the end of a trip, if the interval between successive two data is larger than 120
seconds; however, some sorts of methods for more accurate inference of origins and
destinations may be possible. Regarding the estimation of the discount factor, we as-
sumed the unique value at each time period. It means that all travelers have a com-
mon value of the discount factor; however, more realistically, its value is assumed to
depend on the characteristics of each traveler. The variation, e.g., among travelers or
networks at the same time period, should be discussed in the future work. A mixed
logit model or a latent class model can be applied for this purpose. Moreover, the ex-
tension of the model to a dynamic model that considers a time-dependent network
is also a future work.

As an application of the β-SRL model, we refer to the framework of trajectory-
oriented gridlock network management in Figure 4.1, again. The β-SRL model is ap-
plicable for both trajectory data in ordinary and extraordinary situations, thanks to
its generalized description of myopic decisions and global decisions in route choices.
Regarding the parameter estimation, the calculation of log-likelihood function in
Equation (4.16) does not require the information of whole paths in trips, because the
link choice probability is based on only the information of link transition and the
destination. Therefore, the β-SRL model goes well with the traffic simulations using
emerging sensing technologies, such as full-time connected vehicles. As seen in the
case study, our management method is based on the parameter estimation at each
time period. We are based on the assumption that travelers’ route choice prefer-
ences and the discount factor can change at different time periods, and estimate the
β-SRL model at each period. We set the unit as one hour, because we assume that
the changes depend on the macroscopic situation of the network. For the parameter
estimation, the network is assumed to be static and deterministic during each time
period. We do not use a dynamic model but a static one to detect anomaly of route
choice mechanism. The case study actually showed that the estimated parameters
dynamically changed after the earthquake occurrence on the disaster day, while the
difference among time periods is small on the normal day. These results indicate
the importance of real-time traffic management for the control of the extraordinary
networks, and the β-SRL model that can capture the diversity of drivers’ decision-
making mechanism is applicable to the framework. Moreover, the implementation
of the estimation of the β-SRL model is sufficiently fast for estimating at every one
hour, and even in the case that larger size of data is available and the time unit is
shorter, the framework is expected to work well. Of course, faster and efficient esti-
mation algorithms help for making the framework more feasible. Based on a traffic
simulation using the β-SRL model, information provision, route guidance and sig-
nal control can be implemented for real-time traffic management. This trajectory-
oriented traffic management will be helpful for gridlock network control.
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Chapter 5

Path set restriction algorithm for
Markovian traffic assignment

In this chapter, we propose a method of path set restriction for the Markovian route
choice model to solve its computational challenges dependent on cyclic structures in
networks.

It is known that Markovian traffic assignment models remain main three com-
putational challenges caused from cyclic structures included in networks: unreason-
able cyclic flows, computational instability of the expected utilities, and amplifica-
tion of the IIA property. To solve these challenges, this study proposes a method of
restricting path set based on the concept of time-space prism. We assume the sequen-
tial link choice behavior of travelers and introduce a network description where trav-
eler’s states are decomposed by choice-stage. Based on the network, we introduce
several variables to define a prism. Traveler’s route choice considering all feasible
paths within the prism is modeled. This framework is quite flexible and shown to be
a solution of the challenges of Markovian traffic assignment models through several
numerical examples, which include the validation of computational time, applica-
tions to a stochastic user equilibrium problem and a network-GEV based model.

Keywords: Route choice model; Markovian traffic assignment; Path generation algo-
rithm; Time-space prism; Cyclic paths; Choice-stage-structured network
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5.1 Introduction

Stochastic traffic assignment (STA) is a technique of loading the origin-destination
(OD) entries to a network based on travelers’ perceived travel times (Sheffi, 1985).
Though the simplest definition of the path set for STA is the set of simple paths that
do not pass the same node more than once, the path enumeration of all simple paths
is impossible due to the combinatorial explosion. Indeed, approaches based on im-
plicit path enumeration have provided significant contributions to STA. This pa-
per proposes a new implicit approach of STA that is referred to as a choice-stage-
structured assignment (CSA).

The most popular algorithm of the implicit approach is the algorithm proposed
by Dial, 1971. It restricts the path set to the set of so-called efficient paths that never
include any move that goes away from the destination in terms of travel time. Dial’s
algorithm is popular in STA because of its computational efficiency and the equiv-
alence to the logit-based assignment model (Van Vliet, 1981); however, two large
problems remain in the algorithm. First, it often generates unreasonable flow pat-
terns as a result of restriction of the path set to efficient paths. Secondly, the stochas-
tic user equilibrium that is solved with Dial’s algorithm does not converge to an
exact solution because the set of efficient paths can change at each iteration depen-
dently on the link flows. Though Leurent, 1997 proposed a solution to the second
problem, it can also generate unreasonable flow patterns and is not able to consider
cyclic paths.

Another representative approach without explicitly enumerating paths is the
Markovian traffic assignment (MTA) algorithm that is able to consider the universal
set, i.e., the set of infinite paths including cyclic paths. MTA was first proposed by
Sasaki, 1965 and then was linked to the logit-based assignment by Bell, 1995 and
Akamatsu, 1996. Akamatsu, 1997 showed the link-based equivalent optimization
problem for implicit STA models, and thus the stochastic user equilibrium prob-
lem based on MTA was formulated. Recently, it gathers much attention once again
because of its high operability. Baillon and Cominetti, 2008 mentioned the inter-
pretation of decision-making dynamics of the MTA model, and Fosgerau, Frejinger,
and Karlstrom, 2013 linked it to disaggregate discrete choice analysis based on a dy-
namic discrete choice framework (Rust, 1987). However, the MTA model still has
computational challenges to be solved: it can output excessive cyclic flows, and the
existence of solutions depends on network structure and network condition (see the
discussion of Oyama and Hato, 2017).

The logit-based assignment models including Dial’s algorithm and the MTA also
suffer from the Independence from Irrelevant Alternatives (IIA) property of the logit
model and can load excessive flows to paths that overlap each other. Although Da-
ganzo and Sheffi, 1977 proposed a probit-based assignment algorithm to solve the
overlapping problem, it requires heavy computational burden, and thus the applica-
tion to stochastic user equilibrium in real networks is difficult. Route choice models
that are based on the GEV model (McFadden, 1978) such as the CNL model (Vovsha
and Bekhor, 1998; Prashker and Bekhor, 1998; Prashker and Bekhor, 2004) and the
GNL-based STA model (Bekhor and Prashker, 2001) are able to consider the under-
lying correlation structure among path alternatives. Since the GEV-based models re-
quire the path enumeration, network-GEV (Bierlaire, 2002; Daly and Bierlaire, 2006)
based route choice models that are able to capture the correlation structure without
explicitly enumerating paths were proposed (Papola and Marzano, 2013; Hara and
Akamatsu, 2014; Ma and Fukuda, 2015; Mai, 2016). However, the application of the
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network-GEV model requires editing of the network to remove cyclic structures, and
thus these models are not able to consider original networks that include cycles.

The CSA algorithm proposed in this paper is based on the MTA and describes
the sequential link choice behavior at each choice-stage. We incorporate the choice-
stage-constraint into the route choice model and decompose the state of the network
at each choice-stage. Given the novel network description, we propose a path set
restriction method based on the concept of time-space prism. Thanks to this idea,
we can solve the challenges of the MTA: excessive cyclic flows, computational in-
stability dependent on network structure and conditions, and the amplification of
the IIA property. Note that our method is a static model and does not consider any
dynamics of link flows or network.

The structure of the paper is as follows. In Section 2, we first introduce the
description of the choice-stage-structured network (CSN). Given the network de-
scription, we propose a novel method of restricting path set based on the concept
of time-space prism. In Section 3, we formulate a route choice model in the CSN
and explain how to calculate the state transition probabilities. In Section 4, we pro-
pose the choice-stage-structured assignment (CSA) algorithm. In Section 5, we give
some numerical examples to examine computational characteristics of the CSA algo-
rithm, from the viewpoints of computational instability and efficiency, cyclic flows
and overlapping of routes. Conclusions and discussion of future research are pro-
vided in the end.

5.2 Path set restriction based on prism constraints

5.2.1 Choice-stage-structured network

Consider a directed connected graph Ĝ = (N ,A), where N is the set of nodes and
A is the set of links. The spatial connection indicator δ(n′|n) equals one if a link
connecting the node pair (n → n′) exists, and it equals zero otherwise. This is
a general spatial network. We aim at modeling which route a traveler takes from
origin node o to destination node d in the network and calculating the aggregate
flow on each link.

To do so, this paper introduces a choice-stage-structured network (CSN). We first
define choice-stage T = {0, 1, . . . , T} and let G = (S , E) denote a CSN, where S =
[S0, ...,St, ...,ST] is the array of state sets with entries of state s = (ts, ns), ts ∈ T ,
ns ∈ N , and E = [E0, ..., Et, ..., ET−1] is the array of edge sets with entries of edge
e = (s, s′), s, s′ ∈ S , (ns, ns′) ∈ A, respectively. Especially, St contains only the states
s at ts = t, and the edges that are included in Et always connect a state s at ts = t
with a state s′ at ts′ = t + 1. Given the notation, a path on a CSN is described as
a sequence of T states [s0, . . . , sT] = [(0, ns0), . . . , (T, nsT )]. In a CSN, it is important
that s and s′ (ts ̸= ts′) are strictly different from each other even if both of them are at
the same spatial node n, i.e., ns = ns′ = n. Thanks to this property, we can avoid the
cyclic structures from the network, while we are able to retain and consider spatial
cycles.

5.2.2 Choice-based prism constraints

The key parameter of the CSN is T, which is called choice-stage constraint (CC) and
indicates the maximum number of choice-stages that a traveler experiences in a trip.
The state and edge sets at a certain choice-stage St, Et are restricted based on the
constraint as follows.



82 Chapter 5. Path set restriction algorithm for Markovian traffic assignment

Given the origin and destination node pair o, d ∈ N , we consider the initial and
final states: so = (tso , o) and sd = (tsd , d), where tso = 0 and tsd = T. We first
introduce variables Do(n) and Dd(n) that are defined as the minimum number of
steps (choice-stages) from node o to n and from node n to d in the spatial network,
respectively. With respect to Do(n) and Dd(n), the relations between connected two
nodes are given by dynamic programming as follows:

Do(n) = min
i∈N−

n

[Do(i) + 1] , (5.1)

Dd(n) = min
j∈N+

n

[
Dd(j) + 1

]
, (5.2)

where N−
n and N+

n are the set of upstream and downstream nodes directly con-
nected to node n, respectively. Given these variables, the set of states at t, St is
described as follows:

St = {(t, n)|It(n) = 1}, (5.3)

where

It(n) =
{

1, if Do(n) ≤ t, Dd(n) ≤ T − t
0, otherwise.

(5.4)

I(s) = It(n) is the state existence condition. Then, we define the state connection
indicator ∆, and the constrained set of edges Et is described as follows:

Et = {((t, n), (t + 1, n′))|∆t(n′|n) = 1}, (5.5)

where

∆t(n′|n) = It(n)δ(n′|n)It+1(n′), (5.6)

and δ(n′|n) is the spatial connection indicator as already defined. These constraints
indicate that the link choice set that a traveler faces is constrained and changes at
each choice-stage, even if at the same spatial node. That is, above-mentioned pro-
cedure not only reduces the number of states considered in the model by removing
unused states but also expresses the limitations on the travel of individuals. Paths
on a CSN use only states and edges that satisfy the constraints, and the set of the
paths that travelers are able to take forms a prism that shows individuals’ possible
behavior in time-space (Hägerstrand, 1970).

Note that what the constrains mean with respect to path depends on the defi-
nition of spatial network and choice-stage. It is typically assumed that a traveler
chooses link at each intersection as shown in Table 5.1 (a). In this case, the number
of links that are included in a path r is constrained by T. The following sections and
numerical examples in the paper are based on this assumption. On the other hand,
if we modify the network by adding pseudo nodes, T is able to express other path
constraints. If we edit the network so that all links have the same length l (Table
5.1 b), only paths whose trip length is shorter than T · l are considered by travelers.
Also, in the case that all links are associated with the same travel time τ (Table 5.1 c),
the path is constrained with respect to travel time.
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TABLE 5.1: Network definition and choice-stage constraint variables

Choice-stage Spatial network Constraint of path r

(a) Intersection (#links)r ≤ T

(b) Unit distance l (triplength)r ≤ T · l

(c) Unit time τ (traveltime)r ≤ T · τ

5.2.3 Illustrative examples

Figure 5.1 shows an example of the set of the restricted paths by the prism. Consider
the directed and connected spatial graph in the left panel of Figure 5.1, where the
origin and destination are node 7 and 14, i.e., so = (0, 7) and sd = (T, 14). When
we set T = 5, the set of possible paths is restricted within the prism as shown in the
right panel in Figure 5.1. We focus on node 18 as an example. Given that D7(18) = 3
and D14(18) = 2, the vector of state existence indicators with respect to node 18 is

I(18) =
( 0 1 2 3 4 5

0 0 0 1 0 0
)
. (5.7)

Regarding the state connection condition, ∆2(18|17) = ∆2(18|13) = ∆3(19|18) =
∆3(13|18) = 1 and otherwise ∆t(18|n) and ∆t(n|18) equal to zero. In this way, we
have Sts in layers and obtain the prism as shown on the right panel of Figure 5.1.
The prism also indicates the set of feasible paths P s′

s that is based on the fundamental
states s and s′. In the case of Figure 5.1, the prism-based path set P (5,14)

(0,7) includes
forty one paths that are exhibited in Table 5.2. While the number of feasible paths
is restricted into an enumerable number by the prism, reasonable cyclic paths may
exist within the prism. Note that we use an example of T = 5 but are able to control
the path set by adjusting the value of T.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

FIGURE 5.1: Illustration of a constrained network by the prism
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TABLE 5.2: Restricted path set P (5,14)
(0,7)

node number at each time
path t = 0 1 2 3 4 5 path t = 0 1 2 3 4 5

1 7 2 3 4 9 14 22 7 8 9 14
2 7 2 3 8 9 14 23 7 8 13 8 9 14
3 7 2 3 8 13 14 24 7 8 13 8 13 14
4 7 2 7 8 9 14 25 7 8 13 12 13 14
5 7 2 7 8 13 14 26 7 8 13 14
6 7 2 7 12 13 14 27 7 8 13 18 13 14
7 7 6 7 8 9 14 28 7 8 13 18 19 14
8 7 6 7 8 13 14 29 7 12 7 8 9 14
9 7 6 7 12 13 14 30 7 12 7 8 13 14

10 7 6 11 12 13 14 31 7 12 7 12 13 14
11 7 8 3 4 9 14 32 7 12 11 12 13 14
12 7 8 3 8 9 14 33 7 12 13 8 9 14
13 7 8 3 8 13 14 34 7 12 13 8 13 14
14 7 8 7 8 9 14 35 7 12 13 12 13 14
15 7 8 7 8 13 14 36 7 12 13 14
16 7 8 7 12 13 14 37 7 12 13 18 13 14
17 7 8 9 4 9 14 38 7 12 13 18 19 14
18 7 8 9 8 9 14 39 7 12 17 12 13 14
19 7 8 9 8 13 14 40 7 12 17 18 13 14
20 7 8 9 10 9 14 41 7 12 17 18 19 14
21 7 8 9 10 15 14

As discussed in the beginning, MTA overpredicts the flows of cyclic paths by
considering the universal set that includes infinite cyclic paths, especially in the case
that the costs of cyclic structures are small. In contrast, this paper focuses on that
infinite cyclic paths are unrealistic from the viewpoint of decision making of trav-
elers and proposes a method of systematically restricting path set by introducing
the parameter of the CC. Even though it is an exogenous parameter, the CC can be
interpreted as a behavioral parameter that defines the prism such as constraints of
the number of links, trip length or travel time. Indeed, these aspects are used by
previous methods of defining path sets, such as the k-shortest path algorithm (Epp-
stein, 1998), the link elimination method (Azevedo et al., 1993), the labeling method
(Ben-Akiva, Cyna, and Palma, 1984) and the branch-and-bound method (Prato and
Bekhor, 2006). Compared to these literatures, our method contribute to consider all
feasible paths within the prism without explicitly enumerating paths. It is reason-
able enough to apply to traffic assignment problems. Moreover, since I(s) = 0 for
states exterior to the prism, the matrix ∆t has a sparser structure than the original
incidence matrix δ. Focusing on this structure and using the description of sparse
matrix that memorizes only non-zero elements, we can significantly reduce the vol-
ume of computation and the memory capacity.

5.3 Route choice model

In this section, we formulate a route choice model in choice-stage-structured net-
works.
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5.3.1 Formulation

We assume that a traveler in state st = (t, n) chooses the state st+1 = (t + 1, m) that
minimizes the sum of the cost of link (n, m), cnm, and the expected minimum cost
from state st+1 to the final state sd, µsd

t+1(m). The transition probability from state
st to state st+1 is given by the multinomial logit model as follows (for the sake of
simplicity, we omit the index of the absorbing state sd):

pt(m|n) = ∆t(m|n)e−θ{cnm+µt+1(m)}

∑m′∈N ∆t(m′|n)e−θ{cnm+µt+1(m′)} , (5.8)

where θ is the perception parameter of the travel cost that is strictly positive. The
expected minimum cost µt(n) is recursively formulated by the Bellman equation
(Bellman, 1957):

µt(n) = E

[
min

(t+1,m)∈S+
(t,n)

{c̃nm + µt+1(m)}
]

, (5.9)

where

S+
(t,n) = {(t + 1, m) ∈ St+1|∆t(m|n) = 1}, (5.10)

c̃nm = cnm + εnm. (5.11)

S+
(t,n) is the following set of successive states of s = (t, n). ε is the i.i.d. extreme

value type I. By this assumption of the random term distribution, Equation (5.9) is
re-formulated as the logsum

µt(n) =
{

− 1
θ log ∑m∈N ∆t(m|n)e−θ{cnm+µt+1(m)}, t ̸= T ∧ n ̸= d,

0, t = T ∨ n = d.
(5.12)

The above formulations of dynamic programming are shown in Markov chain as-
signment models, such as Akamatsu, 1996, Baillon and Cominetti, 2008 and Fos-
gerau, Frejinger, and Karlstrom, 2013; however, our model is the first to incorporate
the concept of choice-stage t and prism constraints ∆t(m|n) into route choice model-
ing. This means that any state transition going outside of the prism is not permitted
even if the two states are spatially connected (Figure 5.2), thus the probability of
unrealistic cyclic paths become zero.

within prism

outside

FIGURE 5.2: Constraint of transition by the prism
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5.3.2 Solving Bellman equation

The incorporation of the prism constraints also enables one to solve the Bellman
equation easily. We transform Equation (5.12) by taking the exponential.

e−θµt(n) =

{
∑m∈N ∆t(m|n)e−θ{cnm+µt+1(m)}, t ̸= T ∧ n ̸= d,

1, t = T ∨ n = d.
(5.13)

We then define an array of vectors v = [v0, ..., vt, ...vT], where the size of vector vt
is |N | × 1, and an array of matrices W = [W0, ..., Wt, ..., WT−1], where the size of
matrix Wt is |N | × |N |, with entries

vtn = e−θµt(n), Wtnm = ∆t(m|n)e−θcnm . (5.14)

The expected minimum costs µ are the solutions of the following equations:

vtn =

{
∑m∈N Wtnmvt+1,m, t ̸= T,

1, t = T.
(5.15)

Finally, the Bellman equation Equation (5.15) can be written as:

vt = Wtvt+1 + b, (5.16)

where b(|N | × 1) is a vector with zero values for all states except for the destination
that equals 1.

For previous Markovian traffic assignment models (e.g., Bell, 1995; Akamatsu,
1996; Baillon and Cominetti, 2008; Fosgerau, Frejinger, and Karlstrom, 2013), the
Bellman equation is similar to Equation (5.16) but does not have the index of t, i.e.,
v̄ = W̄v̄ + b, and thus they somehow need to solve the system of linear equations.
In the case of the system of linear equations, the following inequality regarding the
spectral radius ρ(W̄) of the incidence matrix W̄ (not including the concept of time)
should be satisfied:

ρ(W̄) = max
h

{|λh|} < 1, (5.17)

where λh is the h-th eigenvalue, and the inequality (5.17) is the necessary and suffi-
cient condition for the matrix W̄k to converge as k → ∞. That is, the computational
stability of the MTA depends on the structure and condition of network; especially,
the convergence becomes unstable when the network includes cyclic structures, and
the perception parameter of the travel cost is small (see a numerical example in Ap-
pendix B.1 for the further discussion).

In contrast, in this paper, the expected minimum cost is defined for each state
that is decomposed by choice-stage t, and thus the Bellman equation can be solved
with the following backward induction:

Step 1: Set so = (0, o), sd = (T, d) and µsd
t (d) = 0, ∀t. Calculate ∆, then W.

Step 2: Initialize t = T, and µsd
t (n) = 0, ∀n ∈ N .

Step 3: Set t = t − 1, and calculate µsd
t (n) with Equation (5.16).

Step 4: Finish the algorithm if t = 0, otherwise back to STEP 3.
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It is very simple and does not require convergence, and the computational burden
is always same order (T × |N |), as long as the time constraint T is finite. Also,
since unrealistic states are removed beforehand thanks to the prism constraint ∆, we
are stably able to solve the Bellman equation. Moreover, the backward induction
can be applied to the GEV-based Markovian models (Mai, Fosgerau, and Frejinger,
2015; Mai, 2016; Oyama and Hato, 2017), because the algorithm does not depend on
whether the equation is linear or non-linear.

5.4 Stochastic traffic assignment

In this section, we present a STA algorithm on the choice-stage-structured network.
As well as previous STA algorithms (Dial, 1971; Bell, 1995; Akamatsu, 1996), it aims
to calculate the spatial link flow xnm, (n, m) ∈ A in flow-independent networks
without path enumeration.

5.4.1 Preliminary

We introduced an indicator It(n), based on only one pair of origin and destination
(OD), i.e., It(n) = Iod

t (n), for the sake of making it clear to understand the formation
process of the prism in Figure 5.1. However, in the context of traffic assignment, it
is usual to deal with multiple OD pairs. The previous STA algorithms (Dial, 1971;
Akamatsu, 1996) use variables specific for not each pair of origin and destination but
each origin (or each destination), in order to implement the assignment for an origin
and multiple destinations (or multiple origins and a destination) simultaneously. For
this reason, we herein re-define It(n) as a destination-specific variable, i.e., It(n) =
Id
t (n) as follows:

Id
t (n) =

{
1, if mino∈O{Do(n)} ≤ t, Dd(n) ≤ T − t
0, otherwise.

(5.18)

where O ⊆ N is the set of origin nodes. The state connection indicator ∆ and the
transition probability p can be calculated using Equation (5.6) and (5.8) with Id

t (n) as
the destination-specific variables. In the followings, we use the destination-specific
variables, namely, the assignment is based on a many-to-one procedure.

5.4.2 Assignment algorithm

We define yd,t
n and xd,t

nm as the state flow at s = (t, n) and edge flow from s = (t, n)
to s′ = (t + 1, m), respectively. The relationship between state and edge flows is
formulated as follows:

yd,t
n =

 ∑i∈N xd,t−1
in , t ̸= 0

qnd, t = 0 ∧ n ∈ O
0, t = 0 ∧ n ̸∈ O

(5.19)

and

xd,t
nm = yd,t

n pd
t (m|n), ∀t ∈ T \T (5.20)
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where qod is a given generating flow between each OD pair. For each state s = (t, n),
the following condition of flow conservation is satisfied:

∑
i∈N

xd,t−1
in − ∑

m∈N
xd,t

nm + ∑
o∈O

ηso
(t,n)qod − ηsd

(t,n) ∑
o∈O

qod = 0, ∀t ∈ T , ∀n ∈ N , (5.21)

where ηso
s and ηsd

s are indicators that equal to one when s = so = (0, o) and s = sd =
(T, d), and are zero when s ̸= so and s ̸= sd, respectively.

Lemma 5.4.1. In a CSN, all flows with the same destination d are absorbed into the unique
final state sd = (T, d).

Proof. The condition of flow conservation for s = sd is formulated by Equation (5.21)
as

∑
i∈N

xd,T−1
id − ∑

o∈O
qod = 0, (5.22)

and namely by Equation(5.19),

yd,T
d = ∑

o∈O
qod. (5.23)

This indicates that the state flow at s = (T, d) is equivalent to the sum of generating
flows. ■

Note that Lemma 5.4.1 is provided by the prism constraint. Since pd
t (m|n) in-

cludes the state connection indicator ∆d
t (m|n), no transition from states within the

prism to states external to the prism is considered, and thus the traffic volume al-
ways flows within the prism.

FIGURE 5.3: Illustration of a network assignment

Figure 5.3 shows the assignment algorithm on a CSN: we first set t = 0 and
yd,0

o = qod, ∀o ∈ O and then alternately calculate state and edge flows using Equation
(5.20) and (5.19) until the choice-stage arrives at T. After calculating flows for all
destinations, we finally obtain spatial link flow of (n, m) ∈ A, xnm by the summation
of xd,t

nm as follows:

xnm = ∑
d∈D

xd
nm = ∑

d∈D

T−1

∑
t=0

xd,t
nm. (5.24)

where D ⊆ N is the set of destination nodes.
The procedures of the assignment algorithm are summarized below.
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Algorithm 1 Choice-stage-structured assignment
Input:
Spatial network graph G = (N ,A)
OD flow entries {(o, d, qod)}
Choice-stage constraint T
Output:
Link flow {xnm}

1: Calculate the matrix Dn(m) (|N | × |N |).
2: for d = 1 to |D| do
3: #Step1: Choice-stage-structured network
4: Set t = 0. For n ∈ O, Id

t (n) = 1, and otherwise Id
t (n) = 0.

5: for t = 1 to T do
6: Calculate the vector Id

t (|N | × 1).
7: Calculate the matrices ∆d

t−1 (|N | × |N |) and Wd
t−1 (|N | × |N |).

8: end for
9: #Step2: Transition probabilities

10: Set t = T. For n = d, vd
tn = 1, and otherwise vd

tn = 0.
11: for t = T − 1 to 0 do
12: Calculate the vector vd

t (|N | × 1).
13: end for
14: #Step3: Assignment
15: Set t = 0. For n ∈ O, yd,t

n = qod, and otherwise yd,t
n = 0.

16: for t = 1 to T do
17: Calculate the matrices pd

t−1 (|N | × |N |) and xd,t−1 (|N | × |N |).
18: Calculate the vector yd,t (|N | × 1).
19: end for
20: Calculate the matrix xd (|N | × |N |).
21: end for
22: Calculate the matrix x (|N | × |N |).
23: return Spatial aggregate link flow {xnm, ∀(n, m) ∈ A}.

5.4.3 Properties of the assignment model

Proposition 5.4.1. The set of flow calculated by the CSA algorithm is equivalent to the
solution of the following optimization problem (CSA-STA):
[CSA-STA]

min Z(f) = ∑
nm

cnmxnm +
1
θ ∑

d
∑

t
∑
nm

xd,t
nm ln xd,t

nm − 1
θ ∑

d
∑

t
∑
n
(∑

m
xd,t

nm) ln(∑
m

xd,t
nm),(5.25)

s.t., Equation (5.21) and

xnm = ∑d ∑t xd,t
nm, ∀(n, m) ∈ A, (5.26)

xd,t
nm ≥ 0, ∀d ∈ D, ∀t ∈ T , ∀(n, m) ∈ A. (5.27)
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Proof. We define the Lagrange L as

L(f, γ, λ) = Z(f)

+∑
d

∑
t

∑
n

γd,t
n

(
∑
h

xd,t−1
hn − ∑

m
xd,t

nm + ∑
o

ηso
(t,n)qod − ηsd

(t,n) ∑
o

qod

)

+∑
nm

λnm

(
xnm − ∑

d
∑

t
xd,t

nm

)
. (5.28)

The Karush-Kuhn-Tucker (KKT) condition of the CSA-STA is

∂L
∂xd,t

nm
· xd,t

nm = 0, (5.29)

∂L
∂xd,t

nm
≥ 0, (5.30)

and Equations (5.21),(5.26) and (5.27). Therefore, we obtain the following equation
when xd,t

nm ≥ 0:

cnm + log
xd,t

nm

∑j xd,t
nm

+ γd,t+1
j − γd,t

i = 0. (5.31)

By transforming Equation (5.31), we obtain

pd
t (m|n) = xd,t

nm

∑j xd,t
nm

= e−θ(cnm+γd,t+1
m −γd,t

n ). (5.32)

Since the summation of transition probabilities pt(m|n) is conserved as one for any
state s = (t, n),

e−θγd,t
n = ∑

m
e−θcnm e−θγd,t+1

m (5.33)

is satisfied. Assuming γd,t
n as the expected maximum utility µsd

t (n) at state s = (t, n),
Equation (5.33) is equivalent to the Bellman equation of Equation (5.16), that is,
Equation (5.32) is the route choice model in the CSN. ■

Proposition 5.4.2. The CSA-STA is equivalent to the logit-based assignment with the
prism-based path set.

Proof. The expansion of Equation (5.33) to time T with the notations vt,n = e−θγd,t
n

and w̄nm = e−θcnm is

vt,nt = ∑
nt+1

w̄ntnt+1 ∑
nt+2

w̄nt+1nt+2 · · · ∑
nT−1

w̄nT−2nT−1 · w̄nT−1dvT,d.

(5.34)

At any time t + l (0 < l < T − t), only the state st+l = (t + 1, nt+l) that satisfies
Dnt(nt+l) ≤ l and Dd(nt+l) ≤ T − (t + l) is considered; therefore Equation 5.34 is
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transformed as:

vt,nt = vT,d ∑
r∈P (T,d)

(t,nt)

∏
nm∈r

w̄nm

= vT,d ∑
r∈P (T,d)

(t,nt)

e−θcr , (5.35)

where P (T,d)
(t,nt)

is the set of all feasible paths that arrives at d from nt within (T − t)
steps, which is the time-space prism defined by the states (t, nt) and (T, d), and cr is
the cost of path r. By assuming vT,d = 1, we obtain

vt,nt = ∑
r∈P (T,d)

(t,nt)

e−θcr , (5.36)

which is also satisfied at (T, d) (the right side equals to one). Given Equations (5.32)
and (5.36), the probability of path r = [n0, n1, . . . , nT−1, nT] (n0 = o, nT = d) is
formulated as

P(r) =
T−1

∏
t=0

pt(nt+1|nt)

= e−θ ∑T−1
t=0 cntnt+1

vT,d

v0,o

=
e−θcr

∑r∈P (T,d)
(0,o)

e−θcr
. (5.37)

This is equivalent to the logit-based assignment with the prism-based path set P (T,d)
(0,o)

that is defined in Section 5.2.
From the above, it is proved that the CSA-STA is equivalent to the logit-type

assignment with the path set defined by the prism. ■

Proposition 5.4.3. The CSA-STA has the unique solution.

Proof. The first term of the objective function (5.25) is a strictly convex function of
x. The second and third terms are entropy terms and can be decomposed into the
entropy function for each state s = (t, n), as follows:

−H(f) = ∑
d

∑
t

∑
n
−Hd

tn(f), (5.38)

where,

Hd
tn(f) = −∑

m
xd,t

nm ln xd,t
nm + (∑

m
xd,t

nm) ln(∑
m

xd,t
nm). (5.39)

−Hd
tn is a strictly convex function for the edge flows {xd,t

nm, ∀m ∈ N+
n } at state

s = (t, n) (Akamatsu, 1997). Also, since Equations (5.21), (5.26) and (5.27) are the
constraints of only linear equations and the non-negative condition, the solution
space is a closed convex set. Therefore, the CSA-STA is a convex programming prob-
lem with a strictly convex objective function, and the solution is always unique if it
has the solution. ■
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Given the discussion above, we also obtain the equivalent optimization problem
to the stochastic user equilibrium (SUE) problem that is based on the proposed route
choice model with the prism-based path set. The SUE problem is formulated as
follows:
[CSA-SUE]

min Z(f) = ∑
nm

∫ xnm

0
tnm(ω)dω +

1
θ ∑

d
∑

t
∑
nm

xd,t
nm ln xd,t

nm

−1
θ ∑

d
∑

t
∑
n
(∑

m
xd,t

nm) ln(∑
m

xd,t
nm), (5.40)

s.t., Equation (5.21), (5.26) and (5.27).
In the same way with the CSA-STA, by considering the Lagrangian, we obtain

the same KKT conditions and prove that the CSA-SUE is the equivalent optimization
problem of the stochastic user equilibrium in a CSN. Furthermore, if the link perfor-
mance function ta(xa) is monotonically increasing for the link flow xa, the first term
of the objective function (5.40) is a strictly convex function of x. Since the entropy
terms are the same with CSA-STA, the CSA-SUE is a convex programming problem
with a strictly convex objective function, and the solution is always unique if it has
the solution.

5.5 Numerical examples

In this section, we present several numerical examples to validate the proposed
model compared to existing approaches.

5.5.1 Computational examination

We first have the STA examples using simple networks to show the computational
stability and the efficiency of the model. Examinations of cyclic flows and path cor-
relation structures are shown, too.

Computational stability

To confirm the consistency with previous STA models and the computational sta-
bility, we implement the assignment using the simple cyclic network of Figure 5.4.
The number associated with each link is the link cost cnm. We set generating flow to
qod = 1000 for one OD pair and compare the assignment results given by Dial’s algo-
rithm, MTA and CSA. Table 5.3 shows the assignment results when the perception
parameter θ = 1. The results show that the CSA with T = 20 outputs the same flow
with the MTA (the difference from the Dial’s assignment result comes from its re-
striction to efficient paths). That is, CSA is a generalized formulation of MTA, since
it theoretically corresponds to MTA as a special case, if T is large enough. We also
calculate link flow when θ = 0.2 to check the computational stability of the models,
and the results are shown in Table 5.4. Thanks to the restriction of efficient paths,
Dial’s algorithm is able to calculate the link flow, though cyclic flow cannot be con-
sidered. CSA is able to output results including cyclic flows regardless of the value
of θ, while MTA fails to do so because of a large spectral radius (in this example,
ρ(W) = 1.058). These results demonstrate that the proposed method is consistent
with the MTA approach as a special case, and moreover, it enables solving network
flow even if the link cost and/or the perception parameter are small.
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*Link cost:

FIGURE 5.4: A simple cyclic network

TABLE 5.3: Assignment results in a cyclic network with θ = 1

1-2 2-3 1-4 2-5 3-6 4-5 5-6 4-7 5-8 6-9 7-8 8-9 5-4 7-4
Dial 269 0 731 269 0 731 731 0 269 731 0 269 0 0
MTA 290 54 710 236 54 797 643 83 236 697 67 303 154 16
CSA (T=5) 298 63 702 235 63 639 639 63 235 702 63 298 0 0
CSA (T=10) 290 54 710 236 54 795 642 83 236 697 67 303 153 16
CSA (T=20) 290 54 710 236 54 797 643 83 236 697 67 303 154 16

TABLE 5.4: Assignment results in a cyclic network with θ = 0.2

1-2 2-3 1-4 2-5 3-6 4-5 5-6 4-7 5-8 6-9 7-8 8-9 5-4 7-4
Dial 269 0 731 269 0 731 731 0 269 731 0 269 0 0
MTA - - - - - - - - - - - - - -
CSA (T=5) 465 144 535 320 144 391 391 144 320 535 144 465 0 0
CSA (T=10) 363 36 637 327 36 1431 399 764 327 435 238 565 1032 526
CSA (T=20) 340 12 660 328 12 3312 401 2008 328 413 259 587 2911 3164

Computational efficiency

The CSN has a larger number of states than the general spatial network. In order
to check the computational efficiency of CSA, we compare the computational time
(CPU time) of CSA to those of other STA algorithms using the grid networks in Fig-
ure 5.5. The network has n links on each side, i.e., it includes 2n(n + 1) links and
(n + 1)2 nodes. We assume 10 origins and 1 destination (10 OD pairs) for all settings
of n. Table 5.5 shows the CPU time of Dial’s algorithm, MTA and CSA with T = 2n,
and each reported time is the average of 10 calculations of each assignment algo-
rithm. Note that we use a sparse matrix coding in all assignments and the Dijkstra’s
method for calculating the shortest path in both Dial’s algorithm and CSA. The CPU
time of Dial’s algorithm is the shortest in all cases of n. The CPU time of the MTA
is smaller than that of CSA when n is small. As n is increasing, the difference be-
tween CPU times of MTA and CSA gets smaller, and when n = 70, 80, CSA is faster
than MTA. The size of state space of CSA is larger than those of the other algorithms
due to the incorporation of the choice-stage dimension T. However, reducing the
number of states with the prism constraint allows the computation of the CSA in
reasonable time. In the case of large networks, the MTA requires much time to solve
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the system of linear equations with respect to the expected minimum costs. In con-
trast, as explained in Section 5.3, the computation of the expected minimum cost of
the CSA requires only T iterations. That is, the computational effort increase at most
linearly with respect to T, even though the CPU time of CSA depends on T.

n links

n
 l
in

k
s

FIGURE 5.5: Grid network

TABLE 5.5: Loading time in seconds in grid networks

n 10 20 30 40 50 60 70 80
Dial 0.02 0.24 1.07 3.50 7.60 15.63 28.97 48.75
MTA 0.04 0.19 0.73 2.89 8.75 22.95 52.08 102.32
CSA 0.13 0.51 1.91 5.47 11.77 23.28 42.50 70.00
*The number is the average time of 10 calculations for each algorithm.

5.5.2 Cyclic flows

We herein consider the stochastic user equilibrium (SUE) problem to discuss the
flow patterns that are performed by the three different assignment algorithms. We
solve the problems with the partial linearization method (Patriksson, 1993). In the
algorithm, the sub-problem where the first term of the objective function (Equation
(5.40)) is partially linearized is equivalent to the CSA-STA.

To compare the assignment results given by the three algorithms, we imple-
mented SUE assignments in the Sioux Falls network with 24 nodes, 76 links, 576
OD pairs and 36650 total demands. In this calculation, we set the perception pa-
rameter θ = 1. We denote the assignment results given by the three algorithms as
Dial-SUE, MTA-SUE and CSA-SUE, respectively. Figure 5.6 shows the difference of
link flows between MTA-SUE and Dial-SUE (a) and between CSA-SUE and Dial-
SUE (b). Colors exhibit the degree of difference: gray and black links indicate that
the difference from Dial-SUE is small, on the other hand, orange and red links in-
dicate the large increase. The assignment result given by MTA-SUE (a) shows that
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FIGURE 5.6: Stochastic user equilibrium results

flows of the cycle consisting of node 7, 8, 16 and 18 increase by more than 200, and
this indicates that the MTA algorithm generates unreasonable cyclic flows. The as-
signment result given by CSA-SUE (b) with T = max[2Do(d)] indicates the increase
of link 7-18 and 18-7, too; however, the overall increase of link flows are restrained.
These results conclude that the CSA algorithm can reduce the unreasonable cyclic
flow of the MTA algorithm by incorporating the time-constraint concept, which is
based on a behavioral mechanism.

5.5.3 Overlapping paths in cyclic networks

Finally, we show the model properties in terms of overlapping descriptions by ex-
tending the model to a network-GEV based model.

Formulation of a network-GEV model in CSN

Following the literature (Papola and Marzano, 2013; Hara and Akamatsu, 2014), we
extend the proposed model to a network-GEV (n-GEV) based route choice model.
The application of the n-GEV requires the network to be acyclic (see Bierlaire, 2002;
Daly and Bierlaire, 2006), and in the literature of n-GEV based route choice models,
the network was edited to remove cyclic structures. In contrast, in this paper all
paths in CSNs, network states are decomposed by choice-stage, and any paths do
not pass the same node more than once. Therefore, we do not need to remove any
links and the spatial connection condition is retained.

The state transition probabilities of the n-GEV based route choice model in CSNs
(CSN-nGEV) are formulated as follows:

pt(m|n) = ∆t(m|n) · αnme−θn{cnm+µt+1(m)}

∑m′∈N ∆t(m′|n) · αnm′e−θn{cnm′+µt+1(m′)} , (5.41)

where θn is the scale parameter peculiar to node n, and states s = (t, n), ∀t have the
same scale parameter with each other. αnm is the allocation parameter peculiar to the
node pair (n, m) and edges e = ((t, n), (t + 1, m)), ∀t have the common value. Note
that the allocation parameter describes the relationship between neighboring node



96 Chapter 5. Path set restriction algorithm for Markovian traffic assignment
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FIGURE 5.7: Network and alternatives

pairs and satisfies ∑m αnm, αnm > 0, ∀(n, m) ∈ A. By incorporating these parameters,
the Bellman equation can be re-formulated as follows:

vtn = ∑
m∈N

wtnm(vt+1,m)
θn
θm (5.42)

where,

vtn = e−θnµt(n) (5.43)
wtnm = ∆t(m|n) · αnme−θncnm (5.44)

Equation (5.42) is non-linear, but we can solve the equation using the backward in-
duction algorithm, similarly to as is shown in Section 5.3, because the value function
vtn is structured based on choice-stage.
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TABLE 5.6: Path probabilities

Path probability
Model P1 P2 P3 P4 P5 P6
logit 0.333 0.333 0.333 - - -
nGEV 0.250 0.250 0.500 - - -
CSN-logit 0.294 0.294 0.294 0.040 0.040 0.040
CSN-nGEV 0.281 0.140 0.562 0.005 0.002 0.010

Path probability

The probability of a path r in the CSN-nGEV model is formulated using the transi-
tion probabilities:

P(r = [n0, ..., nt, ..., nT]) =
T−1

∏
t=0

pt(nt+1|nt) (5.45)

Using Equation (5.45), we calculate path probabilities in the network of Figure 5.7
and compare the results with previous models (logit, n-GEV). We set T = 6, then
obtain the six paths shown in the bottom of Figure 5.7. The costs of the paths are
4, 4, 4, 6, 6 and 6, and we denote the path probabilities as P1, P2, P3, P4, P5 and P6,
respectively. The scale parameters and allocation parameters are formulated as

θn =
Do(d)
Dd(n)

(5.46)

αnm =
δ(m|n)
N(n)

, (5.47)

where N(n) is the degree of node n.
Table 5.6 shows the path probabilities given by logit (acyclic), n-GEV (acyclic),

CSN-logit (cyclic) and CSN-nGEV (cyclic). The results of the logit-based route choice
model that does not consider cycles are P1 = P2 = P3 = 0.333. Although paths 1
and 2 share the link 1-2 and are assumed to be correlated with each other, all path
probabilities are equal to each other because of the IIA property of the logit model.
The n-GEV based route choice model is able to describe the correlation among paths,
and the path probabilities are P1 = P2 = 0.250 and P3 = 0.500. Application of the
n-GEV model requires the removal of the link 3-1 to remove cyclic structures, and
thus P4, P5 and P6 can not evaluated. The results of the logit-based route choice
model including cyclic paths (CSN-logit) are P1 = P2 = P3 = 0.294 and P4 = P5 =
P6 = 0.040. This model can not consider the overlapping paths as well as the first
logit model. Compared the three models, the CSN-nGEV model reports the result
P3 > P1 > P2 > P6 > P4 > P5: all path probabilities are different from each other. P1
becomes larger than P2 because of the correlation among the path alternatives that
includes the cyclic paths. P4, P5 and P6 are evaluated to be smaller than the result
of the CSN-logit model, since the CSN-nGEV model considers a mechanism that
travelers take more cost when they pass the same node more than once, which is
referred to as cycle reluctancy in this paper. In disaster or pedestrian contexts, we
cannot ignore the cyclic paths, and it is assumed inappropriate to remove the cyclic
structure from the networks (Oyama and Hato, 2017). The proposed CSN-nGEV
model is able to consider the mechanism of cycle reluctancy, and thus it is able to
avoid the assignment of unreasonable probabilities to cyclic paths.
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(a) Logit

(b) Network-GEV

(c) Logit in CSN

(d) Network-GEV in CSN

FIGURE 5.8: Logit-based and network-GEV-based assignment results
with CSN

Assignment results

Figure 5.8 shows the assignment results given by the four models that are used in
the previous section. Note that this example does not consider congestion. Figure
5.8 (a) and (b) are the results considering only the path 1, 2, and 3. In the case
of Figure 5.8(a), link 1-2 has excessive flow, and on the other hand in the case of
Figure 5.8(b), the flow was alleviated as the result of the consideration of the path
overlapping. Figure 5.8(c) is the result given by the CSN-logit model, and it shows
that more excessive flows were loaded on link 1-2 and 2-3 than the result of Figure
5.8(a). The flow of link 3-1 that constitutes cyclic paths is 119. In contrast, Figure
5.8(d) that is the result given by the CSN-nGEV model shows that the unreasonable
flows generated in the case of Figure 5.8(a), (b) and (c) are alleviated. This is because
the CSN-nGEV model is able to consider the correlation structure among the path
set including cyclic paths. The result of considering cyclic link 3-1 is that more flow
is loaded on path 3 (link 1-4) and less flow is loaded on link 1-2 than the results of the
case of not considering cyclic paths. The difference of flow of link 3-4 is large among
the results: 333 in cases (a) and (c), without considering cyclic paths; 250 in case (b);
and 142 in case (d). Previous studies could not describe the change of flow due to
the correlation structure of cyclic paths; however, our model is able to evaluate the
effect of a variety of paths even if a network includes cyclic paths.

5.6 Conclusions and Discussion

This paper proposes an algorithm for stochastic traffic assignment that is referred
to as a choice-stage-structured assignment (CSA). We decompose the network states
by the choice-stage, and the new network description is able to remove the cyclic
structure from the calculation. Moreover, we incorporate the concept of choice-
stage-constraint into the route choice model and propose an algorithm for system-
atically restricting path sets. The set of all feasible paths after the restriction forms
so-called the time-space prism, i.e., the method reflects behavioral limitation of trav-
elers. Thus, we are able to remove unrealistic paths that are considered in the MTA
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such as paths including infinite cycles. The restriction method also reduces the num-
ber of states that are considered in the model, and this allows the reduction of mem-
ory spaces and computational burden.

It is known that the MTA has a challenge with respect to computational instabil-
ity: weather the Bellman equation can be solved is dependent on the structure and
conditions of network. In contrast, in the CSN, the Bellman equation can be solved
stably by the backward induction with only T iteration, because we assume that the
states are different even if they are at the same spatial node. A numerical example
shows that the CSA is always able to output the link flows, while the MTA is not
able to do so when link costs or the perception parameter are small. The CSA is also
able to examine the change of link flow by varying the parameter of choice-stage
constraint T.

Also, the result of the SUE indicates the possibility that the application of the CSA
algorithm could alleviate the unreasonable cyclic flow given by the MTA. Finally, we
extend the proposed model to the network-GEV model in choice-stage-structured
networks (CSN-nGEV) and show that the CSN-nGEV model is able to describe the
effect of overlapping among the path set including cyclic paths.

These results conclude that the CSA algorithm is the one of the solution of the re-
maining challenges of the MTA: 1) computational instability dependent on network
structure and conditions, 2) unreasonable cyclic flows, and 3) the amplification of
the IIA property, with reasonable computational time.

We believe that our method is also useful for parameter estimation problems
of Markovian route choice models, including so-called recursive logit models (Fos-
gerau, Frejinger, and Karlstrom, 2013). Also, the method can be applied to other
transportation networks such as transit networks with uncertainties (Bell, 2009; Ma
and Fukuda, 2015), pedestrian activity-scheduling networks (Oyama, and Hato, 2016).

As to the limitation of this algorithm, it is worth mentioning about the settings
of the parameter T. Although we set arbitrary values for T in the paper, in the
future work, we will examine the way of setting the parameter T and obtain an
interpretation as a a behavioral parameter using real data.
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Chapter 6

Application to pedestrian
activity-scheduling network

In this chapter, we use a Markovian route choice model to describe the path choice
behavior in time-space networks, and present a framework that evaluate the use
of time and space integrally. We apply it to a pedestrian network design problem.
This is the collaboration work with Dr. Michel Bierlaire and Dr. Riccardo Scarinci at
EPFL.

In the pedestrian route choice context, the continuity between behavior of walk-
ing in networks and of staying for conducting activities is very high. For this rea-
son, the activity path choice approach, which is a route choice model in time-space
networks, is applicable to describe integrally the combination of choices of routes,
activity locations and durations. Activity paths are often complicated, and it is dif-
ficult to solve the activity path choice problem. Most of previous models deal with
the problem as the deterministic one and optimize in the restricted path set in rough
networks. However, pedestrian activities are often probabilistic and should be de-
scribed in high resolution networks. In this study, we propose a Markovian activity
assignment model for dealing with the computational challenges of the pedestrian
activity path choices. Moreover, we present a method for systematically restricting
the path set based on the concept of the time-space prism (Hägerstrand, 1970). We
examine the properties of the model through several illustrative examples and a case
study of the network in Matsuyama-city, Japan. In the end, we present a pedestrian
network design problem based on the activity assignment model. The problem is a
a multi-level and multi-objective programming, and the Pareto front is investigated
by a neighborhood search algorithm.

Keywords: Activity assignment, Route choice model, Time-space constraint, Pedes-
trian, Traffic assignment
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6.1 Introduction

Pedestrian behavior is an important evaluation index for public space design and
retail planning in city centers. Recent social needs such as the environmental con-
servation and the health awareness are paying much attention to pedestrians, and
many municipal governments and retail planning authorities require the models
that evaluate the pedestrian behavior in city centers. Borgers and Timmermans,
1986b; Borgers and Timmermans, 1986c developed a pedestrian simulation model
and applied it to the questionnaire data of Maastricht, and recently, some studies
have reported the analysis of pedestrian behavior using Global Positioning System
(GPS) and detailed sensors (Hato, 2010) or WiFi data (Danalet, Farooq, and Bierlaire,
2014; Danalet et al., 2016). Likewise, the data collection of pedestrian behavior has
been improved in these decades; however, there are still only a few operational mod-
els. In this paper, focusing of these trends, we aim at developing a novel framework
for evaluating pedestrian route choice and time allocation behavior in city centers.
Note that we focus on not microscopic and two-dimensional pedestrian behavior
(e.g., Hoogendoorn and Bovy, 2004; Antonini, Bierlaire, and Weber, 2006; Robin et
al., 2009; Hänseler et al., 2017) but the behavior at about 1km square scale based on
the path choice behavior in activity-scheduling networks.

The pedestrian behavior in a city center is the scheduling behavior from the entry
to the exit and can include multiple activities and multiple route choices within the
district. In many cases, this behavior is restricted by the time-constraint. For this rea-
son, we can assume the pedestrian behavior as an analogy of the home-based daily
activity-scheduling behavior. Over the past decades, a large number of activity-
scheduling models have been proposed (e.g., Bowman and Ben-Akiva, 2000; Miller
and Roorda, 2003; Arentze and Timmermans, 2004b; Habib, 2011). Most of activity-
scheduling models are based on the multiple choices, for instance, the destination
and activity duration are firstly chosen and then the routes are chosen. On the other
hand, in pedestrian route choice context in city centers, the choice of activity does
not necessarily precede trips, and unplanned activities can be generated on the way
of trips context-dependently. For this reason, this paper formulates an activity path
choice model in pedestrian activity-scheduling networks.

The activity path choice model is applicable to describing continuous decisions
in time-space networks. Recker, 1995 proposed an optimization model referred to as
household activity pattern problem (HAPP) to assign households to activity agen-
das, and Arentze and Timmermans, 2004a proposed a state-expanded network to
consider the sequence of changes of activity and vehicle states. Some studies ex-
tend the activity path choice to the dynamic user equilibrium model (e.g., Lam and
Yin, 2001; Liu et al., 2015). Kang and Recker, 2013 and Liao, Arentze, and Timmer-
mans, 2013 extended the activity path choice models by including location choices.
Activity path choice models are often difficult to solve due to its combinatorial ex-
plosion, and previous studies restricted solution set by defining constraints. Chow
and Recker, 2012 used an inverse optimization methodology to solve HAPP model.
These activity path choice models focus on the household daily activity-scheduling
patterns in the macro scale and low-resolution networks and based on pre-trip de-
cision. The activity agendas are given as the necessary activities and the models
are often formulated as the deterministic problem. However, pedestrian behavior
are probabilistic and should be described in high-resolution networks. Pedestrians
are not always based on pre-trip nor global optimal decision. These aspects make
the problem more complicated, because probabilistic models require the choice set
definition, and high-resolution networks increase the number of states. Danalet and
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Bierlaire, 2015 formulated a probabilistic activity path choice model to describe the
pedestrian activity sequences inner the campus of a university and use an impor-
tance sampling method proposed by Flötteröd and Bierlaire, 2013 for path set gen-
eration of the route choice model. Even though they do not consider the location
choices, the path set can be huge, and the model is based on the pre-trip decision.

This paper is the first to describe probabilistic pedestrian activities with route
choices and to analytically evaluate the network flow including time-use pattern.
We focuses on the computational challenges of pedestrian activity scheduling net-
works and introduces an activity assignment model based on the Markov decision
process. This approach is based on the Markov chain assignment (Bell, 1995; Aka-
matsu, 1996; Baillon and Cominetti, 2008), which is a well-known implicit network
loading assignment as well as Dial’s algorithm (Dial, 1971). It uses a sequential
link choice model instead of the pre-trip path choice model and does not require
the path enumeration. We apply this approach to the pedestrian activity-scheduling
networks. The Markov model also enables us to describe the sequential and dy-
namic decision, while previous activity-scheduling models are based on the pre-trip
decision. However, this type of network assignment model suffers from the com-
putation of huge matrix and the computational instability because it can generate
unrealistic cyclic paths. Focusing on the computational challenges, we present a
network restriction method for the activity assignment model based on the Markov
decision process, using the concept of the time-space prism. It is useful to reduce
the number of states and the path set and calculate the transition probabilities more
efficiently. Because the framework is based on a route choice model, we can consider
the correlation structure among activity paths. In this paper, we focus on evaluating
pedestrian space-time flows rather than the specification of the model, and we apply
the proposed model to a pedestrian network design problem as a case study.

6.2 Time-space constraints

6.2.1 Network description

In order to model the activity path choice, which includes both moving and staying
behavior, we use a graph incorporating the concept of scheduling. We first define
a directed graph Gs = (N ,A) representative of the spatial network. N is the set of
nodes, and A is the set of links. The set of nodes N includes two kind of node sets,
i.e., the set of nodes for only moving N m and for both moving and staying N s. Thus,
N = N m ∪N s. Likewise, the set of links A contains both the set of moving links Am

and the set of staying links As, then A = Am ∪As. A moving link am = (i, j) ∈ Am

connects two different nodes i, j ∈ N , i.e., Am = {am = (i, j)|i ̸= j, i, j ∈ N}. A
staying link as = (i, j) ∈ As links the same nodes included in N s, i.e., As = {as =
(i, j)|i = j, i, j ∈ N s}.

We then define a time-structured activity state network Ga = (S , E) by incorpo-
rating the time axis into the spatial network Gs. S is the set of states and E is the set
of edges, where a state s is defined as the pair of time and space (node) and an edge
e connects two different states. Time t is discretized at each interval τ, and has the
time-constraint T, i.e., t ∈ {0, 1, ..., T}. Thus, the set of states S and the set of edges
E are decomposed as S = [S1, ...,St, ...,ST] and E = [E1, ..., Et, ..., ET−1]. The set of
states at time t St is defined as St = {st = (t, i)|t ∈ {0, 1, ..., T}, i ∈ N} and the set of
edges between time t and t + 1 Et is defined as Et = {et = (s, s′)|s ∈ St, s′ ∈ St+1},
respectively. According to this notation, an activity path ψ is described as a sequence
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FIGURE 6.1: An activity path ψ0:5 =
[(8, 9), (9, 14), (14, 14), (14, 13), (13, 8)] in time-structured network
and its projections. (a) Spatial network graph, (b) time-structured

network with time constraint T = 5 and (c) time use pattern.

of states from t = 0 to t = T, ψ1:T = [e0, ..., et, ..., eT−1]. Figure 6.1(a) shows an illus-
tration of a spatial network, and Figure 6.1(b) is the time-structured activity state net-
work based on the spatial network (a). By projecting an activity path in the network
(b) on x-y plain, we can evaluate spatial route choice. Figure 6.1(c) is the projection
of the activity path on the time-axis and describes the pattern of time use. With the
description of time-structured network, we are able to evaluate the use of time and
space at the same time.

6.2.2 Network restriction

The activity path choice in the time-structured activity state network has a huge num-
ber of alternatives, which requires large memory space and makes computation ex-
pensive. Moreover, the existence of unreasonable paths causes the computational
instability dependently on network conditions. In order to reduce the network and
make computation stable, we propose a method for restricting state and edge sets
based on Markovian approach.

We assume that an individual necessarily transitions from the current state st to
the next state st+1 at every discretized time t, and the initial state s0 = (0, o) and
the final state sT = (T, d) are always given and fixed for each individual. Where
the origin node o and the destination node d are contained in the set of node N .
These assumptions indicate that every state transition takes the same time τ, and an
individual who departs from the origin node o ∈ N at time t = 0 must arrive at the
destination node d ∈ N within the time-constraint T. Of course, an individual can
arrive at the destination earlier than time t = T.

With the state constraints s0 = (0, o) and sT = (T, d), we restrict the set of states
S and the set of edges E . We at first define the variables for topological ordering;
the minimum number of steps from the origin node o to an node i Do(i), and the
minimum number of steps from an node i to the destination node d Dd(i). These
equal to the shortest path travel time between two nodes when the travel time of all
links are one. Using these variables, the set of states at time t is restricted as St =
{st = (t, i)|i ∈ N , It(i) = 1} where the state existence indicator It(i) is formulated
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FIGURE 6.2: Time-space constraints and path restriction. (a) Prism
constraint when the constraints are s0 = 13 and sT = 13 (T = 5), (b)
Bundle constraint when the constraints are s0 = s2 = s3 = s5 = 13

and (c) Domain constraint.

as follows,

It(i) =
{

1, if Do(i) ≤ t, Dd(i) ≤ T − t
0, otherwise.

(6.1)

Moreover, the constrained set of edges is described as Et = {et = (st, st+1)|st =
(t, i) ∈ St, st+1 = (t+ 1, j) ∈ St+1, ∆t(j|i) = 1} where the time-space state connection
indicator ∆t(j|i) is formulated as follows,

∆t(j|i) = It(i)δ(j|i)It+1(i) ∀t ∈ {0, 1, ..., T}, ∀i, j ∈ N (6.2)

where δ(j|i) is the spatial connection indicator that equals one if the link (i, j) is
contained in the link set A, and zero otherwise. The time-space state connection
indicator ∆t(j|i) denotes the existence of the edge to transition from node i at time
t to node j at time t + 1. We can also denote it based on link description ∆t(j|i) =
∆t(a), a = (i, j) ∈ A. The connection between two edges et = a, et+1 = a′ is
conditioned as follows,

ιt(a′|a) = ∆t(a)∆t+1(a′) ∀t ∈ {0, 1, ..., T − 1}, ∀a, a′ ∈ A (6.3)

This time-space link connection variable ιt(a′|a) is used in Markovian state transition
model for describing activity path choice behavior in a later section.

6.2.3 Time-space prism

As an example, consider the network of Figure 6.1. We set the time-constraint T =
5, and the initial and final state are assumed as s0 = (0, 13) and s5 = (5, 13).
The set of states after restricted is 1: S0 = {13}, S1 = {8, 12, 13, 14, 18}, S2 =
{3, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 23}, S3 = {3, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 23},
S4 = {8, 12, 13, 14, 18} and S5 = {13}. Likewise, the set of restricted edges can be
defined as the edges which connect restricted states. By piling up the restricted set
of states and edges, we get the illustration shown in Figure 6.2(a). The activity paths

1For the sake of simplicity, we omit the notation of time from states. It is expected to not disturb the
understanding of readers because all states included in the set of states St are always at time t.
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never pass outside of the polyhedron colored in gray. This constraint corresponds to
the concept of time-space prism proposed by Hägerstrand, 1970.

Hägerstrand, 1970 also proposed bundle and domain as the time-space constrains
of activity paths, and our method can describe these constraints in the same way.
The bundle constraint indicates the existence of activity that binds an individual on a
certain space during specific time period. For example, the bundle means activities
such as appointment with someone or ones with high-priority. In our notation, the
bundle constraint is described as st−b :t+b

= i (t−b < t+b , t−b , t+b ∈ {0, 1, ..., T}, i ∈ N ).
We show an illustration of the activity path set in Figure 6.2(b) when the bundle
constraint s2:3 = a is added. The domain constraint indicates a certain time-space
sphere where an individual cannot enter such as a shop with limitation of opening
hours and private buildings. In our model, the domain constraint is described as
s ̸∈ Z where the domain Z is defined as the set of states.

6.3 Activity assignment model

Base on the network described in Section 6.2, we propose an activity assignment
model for evaluating the use of time and space of travelers especially in pedestrian
context. We at first formulate an activity path choice model based on Markovian
approach, and then propose an assignment method in time-space networks.

6.3.1 Activity path choice model

We formulate an activity path choice model using the sequential edge transition
model based on Markovian approach. It is assumed that an individual on edge
et = a chooses the next edge et+1 = a′ which maximizes the sum of direct utility
of transition ut

aa′ and the expected maximum utility of subsequent paths from state
et+1 = a′ to the final state sT = (T, d), φsT

t+1(a′). We define vt as the constant or mono-
tonic decreasing function of time. φsT

t (a) is the function that evaluates the expected
utility of prism with st = (t, i) and sT = (T, d) as the vertexes, and is formulated as
the Bellman equation (Bellman, 1957) as below (for the sake of simplicity, we omit
the notation of the final state sT),

φt(a) = max
et+1

E

[
T−1

∑
τ=t

βτ−tũ(eτ+1|eτ)

]

= E

[
max
a′∈E+

ta

{ut
aa′ + βφt+1(a′) + εt+1(a′)}

]
, (6.4)

where ε is the random term of transition utility and i.i.d. extreme value type I and
its scale parameter µ is strictly positive. E+

ta is the set of successive edges connected
with et = a; E+

ta = {et+1 = a′ ∈ Et+1|ιt(a′|a) = 1}. β is the time-space discount rate
of expected utility and satisfies 0 ≤ β ≤ 1. Based on the assumption of distribution
of ε, the transition probability from et = a to et+1 = a′ is given by the multinomial
logit model as follows (see Rust, 1987 for the derivation of the equation),

pt(a′|a) = eµ{ut
aa′+βφt+1(a′)}

∑a′∈E+
ta

eµ{ut
aa′+βφt+1(a′)} . (6.5)
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The choice probability of activity path ψ1:T = [e1, ..., et, ..., eT] = [a1, ..., at, ..., aT] is
formulated as the product of transition probabilities2 ,

P(ψ1:T = [a1, ..., at, ..., aT]) =
T−1

∏
t=1

pt(at+1|at). (6.6)

By the property of maximum value distribution, Equation (6.4) can be re-formulated
as the logsum,

φt(a) =

{
1
µ log ∑a′∈A ιt(a′|a)eµ{ut

aa′+βφt+1(a′)}, t ̸= T ∧ a ̸= d,
0, t = T ∨ a = d.

(6.7)

The activity path choice model proposed in this paper describes the path choice be-
havior in time-space networks without path enumeration, and the prim constraint
∆t reduces unreasonable paths and computational burden. Moreover, the time-space
discount rate β is important to describe decision making dynamics as we will men-
tion later.

6.3.2 Path correlation

It is well-known that Logit type route choice models have the IIA (Independence from
Irrelevant Alternatives) property. In case of activity path choices, the similarity of
paths is a more considerable problem. Three activity paths shown in Figure 6.3 are
different from each other in terms of only time when an activity is implemented,
while all of them share moving route and staying location with each other. That is,
there are points of similarity among the three paths, however they are assumed to
be independent from each other in Logit model because of the IIA property. The
ignorance of the similarity among activity paths can cause the wrong evaluation of
the use of time and space.

time path1 path2 path3

space

t=1

t=3

t=5

o a
1

o a
1

o a
1

FIGURE 6.3: Example of activity paths which have similarity with
each other

Recently some literatures have presented route choice models considering the
correlation structure among alternatives without path enumeration (Papola and Marzano,
2013; Hara and Akamatsu, 2014; Mai, Fosgerau, and Frejinger, 2015; Mai, 2016).
These models are based on the network-GEV (n-GEV) model proposed by Bierlaire,
2002 and Daly and Bierlaire, 2006. However, the application of the n-GEV model re-
quires the network to be acyclic. For this reason, in literature of n-GEV based route

2at does not include the information of time while it has the suffix of time t conveniently. For this
reason, we add the suffix of time t to the transition probability, pt(at+1|at) for distinguishing it from
the spatial transition probability.
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choice models the network was edited to remove cyclic structures. On the other
hand, time-space networks naturally have no cycle and satisfy the condition for ap-
plying the n-GEV model. In this paper, for describing the activity path correlation,
we formulate a n-GEV based activity path choice model with time-space discount
rate and prism constraint.

We here assume that time-space discount rate β and the scale parameter µ are
the variables specific on each state, βst and φst . Using these parameters and taking
exponential, we re-formulate Equation 6.4 as follows,

eµta φt(a) = ∑
a′∈A

ιt(a′|a)eµta{vt
aa′+βta φt+1(a′)} (6.8)

We then divide the deterministic term of state transition utility ut
aa′ into the utility

dependent on only state et+1 = a′, ûet+1 and the other,

ut
aa′ = ût+1,a′ +

1
µta

log αt
aa′ (6.9)

Moreover, we define yt(a) = eφt(a) and Gt,a(y) = yt(a)µta , and re-formulate Equation
6.8 as follows,

Gt,a(y) = ∑
a′∈A

eµt,a ût+1,a′ αt
aa′

{
Gt+1,a′(y)

µta
µt+1,a′

}βta

(6.10)

Equation 6.10 describes the relationship between upstream node et = a and down-
stream node et+1 = a′ in GEV-network, and α is the allocation parameter. The state
transition probability of an arbitrary node pair is given by the following equation,

p(et+k|et) = ∑
et+k−1

p(et+k|et+k−1)p(et+k−1|et) (6.11)

where,

p(et+1|et) =

ηt
aa′

{
Gt+1,a′(y)

µta
µt+1,a′

}βta

∑a′∈A ηt
aa′

{
Gt+1,a′(y)

µta
µt+1,a′

}βta
(6.12)

ηt
aa′ = eµta ût+1,a′ αt

aa′ (6.13)

βta means that the weight of future expected utility can change at each edge. In
pedestrian activity context, it is assumed that whether an individual consider the
future utility or not is dependent on his/her situation at that time. We examine
these parameters through sensitivity analyses in Section 6.4.

6.3.3 Solving the Bellman equation

Note that we have to solve the Bellman equation (6.8) in order to evaluate the max-
imum expected utility and the state transition probability. Since previous implicit
route choice models solve the maximum expected utility at the steady state, they
need to apply inverse matrix or iterative calculation which may cause computa-
tional instability dependently on network conditions. On the other hand, in this
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paper φt(a) has different value at each state (space and time), therefore we can solve
the Bellman equation using following backward induction algorithm:

Step 1: Preliminaries. Set the initial edge e0 = o, the final edge eT = d and φsT
t (d) =

0, ∀t. Calculate I, ∆, ι.

Step 2: Initialization. Set t = T, and φsT
t (a) = 0, ∀a ∈ A.

Step 3: Backward calculation. Set t = t − 1, and calculate φsT
t (a) based on Equation

(6.8).

Step 4: Finalization. Finish the calculation if t = 0, return Step 3 otherwise.

6.3.4 Assignment algorithm

We define gt
a and f t

aa′ as the state flow at (t, a), ∀t ∈ {0, 1, ..., T}, ∀a ∈ A and edge
flow from states (t, a) to (t + 1, a′), ∀t ∈ {0, 1, ..., T − 1}, ∀a, a′ ∈ A, respectively. The
relationship between state and edge flows is formulated as follow,

gt
a =

 ∑k∈A f t−1
ka , t ̸= 0

qod, t = 0 ∧ a = o
0, t = 0 ∧ i ̸= l

(6.14)

and

f t
aa′ = gt

a pt(a′|a), ∀t ∈ {0, ..., T − 1}, (6.15)

where qod is a generating flow from the origin o ∈ O ⊆ A to the destination d ∈ D ⊆
A. The assignment algorithm is following. We first set the generating flow g0

o = qod,
and calculate the edge flows at time t = 1 using Equation (6.15). Then, the state
flows at time t = 2 can be calculated by Equation (6.14). All of other state and edge
flows can be calculated alternately until time t = T. Moreover, we obtain spatial link
flow of a ∈ A, ga by summation gt

a as follow,

ga =
T

∑
t=0

gt
a, (6.16)

where fa in Equation (6.16) corresponds to link flow in previous loading models.
Note that the activity network assignment is computationally expensive if the num-
ber of links and/or times are large. The propose method of time-space constraint
description helps for reducing network size and the path alternatives.

6.4 Illustrative example

We evaluated activity patterns using a simple network of Figure 6.4(a). Figure 6.4(b)
indicates the possible path set under the time-space constraints; T = 5, s0 = (0, 0)
and sT = (5, 14). For simplicity, the transition utility ut

aa′ depends on only the utility
of link a′ ut

aa′ = ûa′ , and the value of ûa′ is given in the parenthesis on each link. The
utility of staying link a ∈ As is defined as ûa = ba + cat where ba > 0 and ca < 0 are
dependent on each activity location and shown on the network.
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FIGURE 6.4: A simple network with three nodes for staying. (a) Net-
work and parameter setting and (b) Time-structured network and

prism constraint.

6.4.1 Activity assignment

Figure 6.5 shows the results of activity assignment where the total demand is 1000
and all of them have the state constraint s0 = (0, 0) and sT = (5, 14), T = 5. Each
column shows the top three frequent activity patterns, link flows and the number
of activities. Activity pattens are generated based on random walk algorithm using
transition probabilities. Link flows are calculated by the time-structured assignment
algorithm proposed by Section 6.3.4. We can also calculate the duration time at each
node by multiplying the flows of staying link by the interval of time discretization,
that is, our activity assignment model in time-space network can evaluate the use of
time and space simultaneously.

Each row corresponds to the result with different value of the time-space dis-
count rate. The time-space discount rate does is common value for all states in this
example. When β = 1, an individual evaluate the instantaneous utility ut

aa′ and fu-
ture expected utility φt+1(a′) at equal weights, i.e., they consider the total utility of
activity paths. As the result, the activity pattern which includes the stay at a3 where
the access cost is high but the utility is large enough was the most frequent. In con-
trast, when β = 0, activities are based on myopic decision without consideration of
future utility. As the result, the pattern including activity at a1 where the access cost
is low was the most frequent, and the flow of staying at a3 was only 6. The result
in the case of β = 0.5 showed the eclectic patterns. These results concluded that
the time-space discount rate β is a parameter describing the difference of decision
making and had a large impact on the evaluation of activity patterns.

6.4.2 Time-space discount rate

In order to examine of the effect of time-space discount rate, we changed the value of
each link and calculated probabilities of eight paths in Table 6.1. We show the path
probabilities in Table 2, where "Original" column presents the probabilities when
βa = 1, ∀a ∈ A and the right four columns indicate the probabilities when the value
of the time-space discount rate of some links change. The probabilities of paths in-
cluding activity at a2 (C, D) and a3 (E, F, G, H) increased when the discount rate
of links corresponding to each activity became small, because the (dis)utilities for
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FIGURE 6.5: Evaluation of activity path and its change with various
β

return (uback) were evaluated as the discounted value. In the real contexts, it is as-
sumed that the weight of future expected utility is large on link which is likely to
be passed, while the weight of myopic utility is large on link with many shops or
heterogeneous characteristics. The results indicated the possibility to describe the
decision making dynamics by changing the value of β on each link. When β8 = 0,
there was a large difference between the probabilities of path F and H that have the
same utotal, and this result indicates the tendency that people want to arrive early at
the main destination because the access cost (−ugo) of path F is smaller than that of
path H. In the case of β6 = β7 = β8 = 0, the probabilities of path C, F and G in-
creased. We confirmed that the effect of the time-space discount rate depends on the
relationship among activity utility, future expected utility, access and egress costs.

6.4.3 Activity path correlation

In order to examine the activity path correlation, we changed the value of scale pa-
rameter φa and calculated the path probabilities. For the sake of simplicity, in this
case study we set time-space discount rate βa = 1, ∀a ∈ A. We show in Figure 6.6 the
change of eight path probabilities when the scale parameter of stay links µ6, µ7, µ8
change. When µ6 = µ7 = µ8 = 1, the probabilities of path A, D, F and H are the same
value, because they are based on the same path-based utility utotal. According to the
change of µ, the activity path probabilities changed, and when µ6 = µ7 = µ8 = 0 the
probabilities of only 4 paths are non-zero. This result shows the transition between
paths with the same activity place (A and B; C and D; E and F; G and H), and we can
describe the path correlation among similar paths by changing the scale parameter
µ.

Here, we examine the effects of removal of specific states when µ6 = µ7 = µ8 =
0.5. In this study, we can describe not only spatial state removals (ex. road closing)
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TABLE 6.1: Eight dominant activity paths and their utilities

path: [links] stay utotal ustay ugo uback
A: [0,1,6,6,6,9,14] a1 4 6 -1 -1
B: [0,1,6,6,9,14,14] a1 3 5 -1 -1
C: [0,2,7,7,7,10,14] a2 5 9 -2 -2
D: [0,2,7,7,10,14,14] a2 4 8 -2 -2
E: [0,1,4,8,12,9,14] a3 6 12 -3 -3
F: [0,1,4,8,13,10,14] a3 4 12 -3 -5
G: [0,2,5,8,13,10,14] a3 2 12 -5 -5
H: [0,2,5,8,12,9,14] a3 4 12 -5 -3

TABLE 6.2: Time-space discount rate and path probabilities

probability with β varied
path original* β6 = 0 β7 = 0 β8 = 0 β6,7,8 = 0.5
A 0.067 0.060 0.054 0.027 0.044
B 0.025 0.008 0.020 0.010 0.010
C 0.182 0.187 0.375 0.074 0.258
D 0.067 0.069 0.019 0.027 0.035
E 0.496 0.508 0.400 0.549 0.460
F 0.067 0.069 0.054 0.202 0.103
G 0.009 0.009 0.007 0.027 0.014
H 0.067 0.069 0.054 0.074 0.062
AB* 0.092 0.068 0.074 0.037 0.054
CD* 0.249 0.256 0.394 0.101 0.293
EFGH* 0.639 0.655 0.515 0.852 0.639
*Original: βa = 1, ∀a ∈ A
*AB, CD, EFGH: Total value of path probabilities

but also the temporal state removals (ex. operation time saving of shop; Domain
constraint in Figure 6.2C), because the activity path choice model includes the con-
cept of scheduling. Table 6.3 shows the change of path probabilities with additional
state constraints. When state s4 = 6 is excluded from the network, path A cannot
be chosen and the choice probability of path B largely increased, and when state
s4 = 7 is removed, travelers cannot chose path C and the choice probability of path
D largely increased, respectively. Regarding the state removal of move links, when
states st = 4, ∀t are removed, the choice probability of path E and F, which include
link 4 in the path, became zero. In that case, choice probability not only of paths
which share the activity location a3 with E and F but also of path C which has the
largest utility utotal expect for path E increased. On the other hand, when states
st = 13, ∀t are excluded, the choice probability of paths that has high similarity with
removed paths increased. These results show the tendency of keeping activity lo-
cations even with additional state constraints, and the relaxation of IIA property of
logit model.

6.5 Case study

We finally show a case study using a simple network of the city center of Matsuyama-
city, Japan. For applying the activity assignment model to the network where the
travel time of links is different, we first introduce a method of network standardiza-
tion. Then we define the utility of links and implement the activity assignment in
Matsuyama-network. Moreover, we apply the framework to a pedestrian network
design problem and investigate the Pareto front solutions in Section 6.5.4.
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6.5.1 Network standardization

In the time-structured activity network, travelers are assumed to necessarily transi-
tion to the next state at each discretized time, and the interval of time discretization
τ is a constant value. This constraint can cause a problem when the length of link is
varied, i.e., discretized time τ can be largely different from the time for passing links.
For this reason, we standardize a network before applying the activity assignment.
Figure 6.7(a) shows an example of standardizing link length. In this case, the length
of link (1, 2) is l12 = 3vwτ where vw is walking speed. In order to solve this problem,
we add two pseudo nodes and divide the link into three links, where the length of
each divided link is l12/3 then passing time is l12/3vw = τ. In the same way, we can
consider the minimum duration time at each node i ∈ N s, τmin

i . In the case of Figure
6.7(b), the minimum duration time at node 1 is τmin

1 = 3τ. Then we add two pseudo
nodes and divide the link into three links as well as moving links.



114 Chapter 6. Application to pedestrian activity-scheduling network

TABLE 6.3: Addition of state constraint and path probabilities

probability with state removed
path original s4 = 6 s4 = 7
A 0.075 0 - 0.089 +0.014(+18.67%)
B 0.010 0.031 +0.021(+210%) 0.012 +0.002(+20.00%)
C 0.205 0.217 +0.012(+5.85%) 0 -
D 0.028 0.029 +0.001(+3.57%) 0.094 +0.066(+235.7%)
E 0.589 0.623 +0.034(+5.77%) 0.694 +0.105(+17.83%)
F 0.011 0.011 ±0.000(±0.00%) 0.013 +0.002(+18.18%)
G 0.001 0.002 +0.001(+100%) 0.002 +0.001(+100.0%)
H 0.080 0.084 +0.004(+5.00%) 0.094 +0.014(+17.50%)

probability with state removed
path original st = 4, ∀t st = 13, ∀t
A 0.075 0.188 +0.113(+150.67%) 0.076 +0.001(+1.33%)
B 0.010 0.025 +0.015(+150.00%) 0.01 ±0.000(±0.00%)
C 0.205 0.511 +0.306(+149.27%) 0.206 +0.001(+0.49%)
D 0.028 0.069 +0.041(+146.43%) 0.028 ±0.000(±0.00%)
E 0.589 0 - 0.598 +0.009(+1.53%)
F 0.011 0 - 0 -
G 0.001 0.004 +0.003(+300.00%) 0 -
H 0.080 0.199 +0.119(+148.75%) 0.081 +0.001(+1.25%)
*βa = 1, ∀a ∈ A, µ6 = µ7 = µ8 = 0.5, µa = 1, ∀a ̸∈ {6, 7, 8}

6.5.2 Modeling utility

Travelers can move on moving links am ∈ Am, which are directed and have the
attributes: link length la, sidewalk width xw

a and shopping street dummy variable
xs

a. There are also links for staying as ∈ As with the deviated function of staying
utility: u̇s

a(ω) = xc
ij + xd

ijω, where ω is continuos time from departure at the origin.
The utility function of link is defined as:

ût
a = θtttta︸ ︷︷ ︸

travel time

+ (θwxw
a + θsxs

a)

(
la

L

)
︸ ︷︷ ︸

utility of moving sidewalk and shopping street

+ θu

∫ (t+1)τ

tτ
(xc

ij + xd
ijω)dω︸ ︷︷ ︸

utility of staying

,(6.17)

where θ is a vector of coefficients and tta is the travel time of link a. L is a standard-
ization constant of link length. Then,

ût
a =

 θttttij + (θwxw
a + θsxs

a)
(

lij
L

)
, a ∈ Am (moving an link)

θu
∫ (t+1)τ

tτ (xc
ij + xd

ijs)ds, a ∈ As (staying a node)
(6.18)

In the time-structured activity network, ttij has to be always same value, i.e., ttij = τ,
∀(i, j) ∈ A, i ̸= j. As mentioned above, we standardize the network in order to make
all of link length same lij = L, therefore the travel time of all links is τ = L/vw.

6.5.3 Assignment result in Matsuyama network

Based on the proposed model, we calculated the pedestrian assignment in a grid
network of the city center in Matsuyama-city, Japan (Figure 6.8). We set the stan-
dardization constant of link length L = 100 [m], which is the length of the shortest
link. The length of the longest links is 300 [m]. Moreover, the walking speed vw is
assumed to be 4.0 [km/h], thus τ = 1.5 [min].
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We show the assignment results in Figure 6.9 where the upper is the link flow and
the lower is the average of activity duration per person at each staying node i ∈ N s.
When the time-constraint was one hour (Figure 6.9A), most of activities occurred
at node 4 or 18 and link flows were locally distributed. When the time-constraint
is two hours (Figure 6.9B), activity locations and link flows are distributed around
node 4 and 18. In real measurement (not appeared in this paper) we could also see
the deviation of activity locations in the city center of Matsuyama-city, therefore the
results in this paper described the expanse of pedestrian activity sphere correspond-
ing to time-constraint. Moreover, when the time-constraint is three hours (Figure
5C), the distribution of activity duration barely changed from the case B while the
link flows were widely distributed. It is assumed that the result came from the utility
decreasing as time went by.
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FIGURE 6.8: Network of the city center in Matsuyama-city, Japan

6.5.4 Application to network design

We finally apply the activity assignment model above to a network design problem.
Recently in Japanese cities including Matsuyama-city, street space conversion at-
tracts more attention as a urban design method for increasing pedestrian activities.
Focusing this kind of design, in this study we assume the widening the sidewalk
width. Given a network of interconnected streets, we are looking for the config-
uration of a network that satisfies the travel demand with the maximum activity
time for different increasing sidewalk area [m2]. We assume that the capital cost of
widening sidewalk width is proportional to the area. Our problem decides on which
links and how wide we increase the sidewalk width in meters, i.e., the decision vari-
able is the sidewalk width nij = xw

ij on each moving link am = (i, j) ∈ Am. We
assume that each moving link has the possible maximum sidewalk width nmax

ij and
the minimum sidewalk width nmin

ij because of geometrical limitation. The minimum
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TABLE 6.4: Attributes of links

source sink la nmin
a nmax

a xs
a xc

a xd
a link

1 2 200 8 8 1 0 0 move
2 3 300 4 8 0 0 0 move
3 4 200 4 8 0 0 0 move
5 6 300 2 8 0 0 0 move
6 7 200 2 8 0 0 0 move
8 9 200 4 8 0 0 0 move
10 11 200 2 8 0 0 0 move
11 12 300 2 8 0 0 0 move
12 13 200 2 8 0 0 0 move
14 15 200 2 8 0 0 0 move
15 16 300 2 8 0 0 0 move
16 17 200 2 8 0 0 0 move
18 19 200 8 8 1 0 0 move
19 20 300 8 8 1 0 0 move
20 21 200 8 8 1 0 0 move
1 8 200 4 8 0 0 0 move
2 5 100 4 8 0 0 0 move
3 6 100 0 8 0 0 0 move
4 7 100 8 8 1 0 0 move
5 9 100 4 8 0 0 0 move
8 10 100 4 8 0 0 0 move
9 11 100 2 8 0 0 0 move
6 12 200 0 8 0 0 0 move
7 13 200 8 8 1 0 0 move
10 14 200 4 8 0 0 0 move
11 15 200 2 8 0 0 0 move
12 16 200 0 8 0 0 0 move
13 17 200 8 8 1 0 0 move
14 18 100 4 8 0 0 0 move
15 19 100 0 8 0 0 0 move
16 20 100 0 8 0 0 0 move
17 21 100 8 8 1 0 0 move
1 1 0 0 0 0 0.5 -0.005 stay
4 4 0 0 0 0 0.8 -0.015 stay
7 7 0 0 0 0 0.4 -0.003 stay
13 13 0 0 0 0 0.3 -0.001 stay
15 15 0 0 0 0 0.5 -0.006 stay
17 17 0 0 0 0 0.3 -0.001 stay
18 18 0 0 0 0 0.8 -0.015 stay
19 19 0 0 0 0 0.3 -0.001 stay
20 20 0 0 0 0 0.3 -0.001 stay
21 21 0 0 0 0 0.4 -0.002 stay
*All links are bidirectional and paired link have same attributes with each other

TABLE 6.5: OD patterns

Pattern s0 sT Flow Pattern s0 sT Flow
1 (0, o1) (T, o1) 400 3 (0, o3) (T, o3) 300
2 (0, o2) (T, o2) 100 4 (0, o4) (T, o4) 200
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FIGURE 6.9: Time constraint and pedestrian activity assignment re-
sults

sidewalk width nmin
ij is assumed to equal to the current sidewalk width on link (i, j)

because we consider only the widening in this study. Then, the sidewalk width nij
must satisfy the following constraint,

nmin
ij ≤ nij ≤ nmax

ij ∀(i, j) ∈ Am (6.19)

We investigate the trade-off curve between the total activity time and the total
increasing sidewalk area. This Pareto front indicates the possible activity time in-
crease for different levels of investment in building a pedestrian network. Therefore,
our problem has two conflicting objectives, maximizing the total activity time in the
district and minimizing the capital cost (increasing sidewalk area). The objective
function for the activity time is,

max z1 = ∑
(i,j)∈A

∑
t

f t
ijτ, (6.20)

where f t
ij is the flow on link (i, j) at time t and τ is the interval of time discretization.

The objective function for the capital cost is,

min z2 = ∑
(i,j)∈A⇕

(nij − nmin
ij )lij ĉ, (6.21)

where ĉ is the unit capital cost for widening sidewalk width [yen/m2] and multi-
plied by the area which is the product of the increased width nij − nmin

ij [m] and the
link length lij [m]. Our problem is a bi-objective optimization problem as mentioned
above, and it is also bi-level programming because travelers react the network con-
figuration and change their activity locations, durations and routes, and vice versa.

We adopt the network update algorithm as the solution methodology (Scarinci
et al., 2016) of the optimization problem. This algorithm has two main steps: activity
assignment and network update. The activity assignment proposed in former sec-
tions is used to evaluate the flows f t

ij on an activity network. The flows are used to
calculate the total activity time associated to the first objective in Equation (6.20). The
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existing
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new solution
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new solution
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FIGURE 6.10: Acceptance criterion of new solutions

network update modifies the current network, and the new solution is evaluated as
a Pareto front solution if it satisfies the following condition,

¬{∃ f ∈ F , z1 ≥ z( f )
1 ∧ z2 ≥ z( f )

2 }, (6.22)

where, F is the set of the Pareto front solutions. We also show the acceptance crite-
rion of new solutions in Figure 6.10.

The network update algorithm consists of four neighborhood structures based
on Scarinci et al., 2016: 1) Remove-random-width 2) Add-random-width 3) Remove-
worst-width 4) Add-best-width , subject to the constraint of Equation (6.19). In order
to identify the worst and best link, we introduce two link-performance-value: loss
φloss and gain φgain formulated as follows,

φloss
ij = {ûij(n

(h)
ij − ñ)− ûij(n

(h)
ij )} · fij ∀(i, j) ∈ Am

φ
gain
ij = {ûij(n

(h)
ij + ñ)− ûij(n

(h)
ij )} · fij ∀(i, j) ∈ Am,

(6.23)

where n(h)
ij is the sidewalk width on link (i, j) at the h-th iteration. The unit re-

moval/additional width ñ is set as 1 [m] in this case study. These performance val-
ues give an upper bound on the possible loss/gain of pedestrian utility associated
with the removal/addition. We start with the network equipped with the maximum
possible sidewalk, i.e., n(1)

ij = nmax
ij ∀(i, j) ∈ Am, and iterate this activity assignment

and network update process for 1000 times.
The main characteristics of explored solutions are shown in Figure 6.11. Fig-

ure 6.11(a) shows all investigated solutions and they indicate the trade-off curve be-
tween total activity time and total area of widened sidewalk. The black circles are the
set of Pareto front solutions which are not dominated by any other solution. Figure
6.11(b) shows the variation of total sojourn time in iteration process, and indicates
the decrease of activity time according to iteration. As seen in Figure 6.11(c), that is
because the total area of widened sidewalk is decreasing as the iteration proceeds.
As the result, we can see the clear Pareto front in Figure 6.11(a).

In Figure 6.12, we also show an example solution A in Figure 6.11(a). Figure
6.12(a) shows the network configuration of solution A, where on eleven links the
sidewalk width increase. These links are located near the origins/destinations or
shopping streets. Figure 6.11(b) shows the activity assignment result in case of the
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activity assignment result in case of the network.

network configuration.

6.6 Conclusions and discussion

This paper propose an activity assignment model based on Markovian approach,
focusing on the high continuity between walking and staying behavior in pedes-
trian contexts. We formulate an activity path choice model based on implicit path
enumeration as one type of network-GEV based model. In order to solve the com-
putational challenges of Markovian assignment model, we introduced the three fol-
lowing methods: 1) time-structured network as a description of activity network,
2) network restriction based on time-space constraints which can be interpreted as
the time-space prisms and 3) the dynamic sequential discrete choice model with
time-space discount rate . The model allows us to compute the activity assignment
with cyclic, multi-trip and time attributes. The assignment results show that time-
space discount rate of expected utility and the prism constraint are important param-
eters that have an influence on pedestrian decision-making. Moreover, we applied
the model to a network design problem in pedestrian context. We investigated the
Pareto front based on network update algorithm and solved a multi-objective and
bi-level programming.
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Chapter 7

Conclusions and future works

This thesis proposes a number of methods for solving issues of Markovian route
choice analysis. Proposed methods are regarding Data and Estimation, Model, As-
signment algorithm, and Application, respectively. Therefore, this thesis is based on a
collection of papers, which are rather independent from each other. The contribu-
tions of this thesis and their relationship are shown in Figure 1.4. In this chapter, we
present an overview of this thesis again and some future research plans.

7.1 Conclusion of the thesis

In Chapter 3, we focus on estimating parameters of route choice models using GPS
datawith measurement uncertainties. Recently, the development of technologies is
facilitating one to observe micro-scale trajectories, such as walking trips and moves
in buildings, using GPS or WiFi technologies. However, in these cases, the measure-
ment errors are still large and the path observations are difficult, because networks
are often dense and spatial attributes affect the size of measurement errors. Since
previous works have focused on networks of vehicles, they have often assumed that
the variance of GPS measurement errors is constant over a network. Some studies
use bayesian approaches and incorporate the prior with given preferences of route
choices to correct the measurement probabilities. We focus on that these parameter
settings cause the biases in the process of estimating route choice models, and pro-
pose two methods to reduce the biases: the sequential link measurement model and the
structural estimation method. The sequential link measurement model is based on the
time-decomposition of states and the Markovian route choice model. It enables us
to estimate the link-specific variance of GPS measurement errors, while in previous
studies the variance is given as a constant value over a network and causes the bi-
ases. The structural estimation method solves the fixed point of the parameters of
route choice and measurement models, and it can remove the biases included in the
prior information. Through twins experiments, we examine the effectiveness of the
proposed methods from the viewpoint of measurement accuracy and the difference
between estimated parameters and the true values. The structural estimation results
show that the proposed method allows to achieve estimates close to the true value
regardless of the initial parameter settings and refine the accuracy of link measure-
ments. Moreover we validate the method in the case of using real data. We use
Probe Person data collected in Matsuyama-city, Japan, and obtain the parameter es-
timation results of the pedestrian route choice model. The results show that the iter-
ation process makes estimates get better by refining path estimations. The estimated
preferences of route choices using the structural estimation method are less biased
and show the different trend from those using the biased route choice observations.
Moreover, the variance of GPS measurement errors, which has been assumed to be
independent of spatial attributes in networks in previous studies, is estimated for
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each link in the proposed model, and the estimated values are realistic.

In Chapter 4, we propose the β-scaled recursive logit (β-SRL) model that incor-
porates a parameter of the sequential discount rate, which is the discount factor
of the dynamic discrete choice model (e.g., Rust, 1987), for capturing the diversity
of decisions under congestions. Through some illustrative examples using simple
networks, we present the properties of the β-SRL model in terms of the path prob-
ability and the link flow prediction, and we also show the differences from sev-
eral existing route choice models. The sequential discount rate reflects the drivers’
decision-making dynamics and has a large impact on the order of path probabili-
ties of routes. It also affects network assignment results, and we conclude that the
evaluation of appropriate sequential discount rates is important for precise demand
forecasting. Moreover, we mention the selectivity of cyclic paths, which have not
been discussed in detail in previous works and may cause the divergence of ex-
pected utilities, and show the effect of the balance between the parameter of link
cost and the sequential discount rate. We then estimate the model using both sim-
ulation data and real data, including GPS traces in the time of the Great East Japan
Earthquake. The estimated parameters using real data show that the difference of
route choice mechanisms between the normal day and the disaster day, and among
the time periods. On the disaster day, all parameters systematically change as time
goes by after the earthquake occurrence, and the estimation results of the sequential
discount rate indicate myopic route choice behavior in gridlock networks. We con-
clude that the β-SRL model enable us to examine the decision-making dynamics in
route choices and also to forecast demand more precisely by estimating appropriate
sequential discount rates. The case study is of the gridlock network, however, it is
assumed that the bias of link utility perception can be seen also in pedestrian and
general vehicle networks.

In Chapter 5, we focus on the computational challenges in Markovian route
choice models. We propose an algorithm referred to as the time-structured assign-
ment (TSA), which is a method for stochastic network loading. Time-structuring of
networks decomposes the state by the timing of decision-making, and it can remove
the cyclic structure from the network for calculations. Moreover, we incorporate the
concept of time-constraint into the route choice model and propose an algorithm for
systematically restricting path sets. Thanks to these ideas, we can solve the Bell-
man equation easily and stably with backward induction, which is a simple solution
method, and we can calculate the expected minimum cost regardless of network
conditions. A numerical example of network loading shows that the TSA can al-
ways output the link flows, while the Markov chain assignment (MCA) cannot do
so when link costs are small. The TSA can also examine the change of link flow by
varying the parameter of time-constraint. The result of the stochastic user equilib-
rium indicates the possibility that the application of the TSA algorithm can alleviate
the unreasonable cyclic flow given by the MCA. Moreover, we extend the model to
the network-GEV model in time-structured networks (n-GEV-t) and show that the
n-GEV-t model can describe the effect of overlapping among the path set including
cyclic paths. The TSA algorithm is the one of solution of the challenges that the MCA
algorithm remains; 1) computational instability dependent on network conditions,
2) unreasonable cyclic flows and 3) the amplification of the IIA property, with rea-
sonable computational time. These challenges occur in the econometric models (see
Fosgerau, Frejinger, and Karlstrom, 2013); therefore, our method can be applied to
the discrete choice analysis to solve the computational problems.
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In Chapter 6, we propose an activity assignment model based on a Markovian
route choice model, focusing on the high continuity between walking and staying
behavior in pedestrian contexts. We formulate an activity path choice model based
on the proposed framework of the Markovian route choice analysis and describe
a pedestrian activity-scheduling problem. By assuming that individuals always
change their state at a certain time interval, the model can describe the choices of
routes, activity locations and durations simultaneously. Moreover, in the context of
assignment, we can evaluate both the spatial link flow and the aggregate duration
time at each node. In the same way in previous sections, we restrict the path set
based on the time-space prism and incorporate the time discount rate to model dy-
namic decisions of travelers. Illustrative examples show that these parameters of the
time-constraint and the discount rate show the critical impact on the time-use pat-
terns of pedestrians. A case study in the network of the city center of Matsuyama-
city, Japan also presents the expanse of pedestrian activity sphere corresponding
to the time-constraint. Finally we apply the activity assignment model to a pedes-
trian activity-based network design problem. We formulate the problem of widen-
ing sidewalk width in the pedestrian network of Matsuyama as a multi-objective
and bi-level programming. We investigate the Pareto front solutions of the problem
using the network update algorithm, which is a heuristic method to search neigh-
borhood solutions. An example solution indicates that the streets whose sidewalks
are widened connect directly to the shopping streets.

By using the models proposed in Chapter 3-6, we identify the preference of route
choice behavior and evaluate network flow even in pedestrian networks in the same
framework. Therefore as the main conclusion, we solve the computational chal-
lenges of previous Markovian route choice models and develop a integrated frame-
work of Markovian route choice analysis regarding Data and Estimation, Model, As-
signment algorithm, and Application.

7.2 Future research

This study is halfway to the completion, and we are proceeding the continuing re-
search. In the following we present the future work related to the content of this
thesis.

In Chapter 3, we point out that previous frameworks of estimating route choice
models include biases in the process of route observations, and propose a new mea-
surement model and a novel estimation method: sequential link measurement model
and structural estimation method.

As the next work, we are planning to develop a more generalized framework,
which is the joint estimation of the measurement model and route choice model.
Our proposed measurement model identifies links sequentially, and it achieves the
reduction of the number of iteration and enables to analyze the model property by
investigating the convergence process of parameters. The framework retains the
problem regarding the analytical characteristics, such as the existence of the fixed
point and the solution stability of the convergence. As a more generalized frame-
work, in the future work, we are planning to maximize the joint probability of the
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two model. Based on the proposed measurement and route choice models, we for-
mulate a problem maximizing the probability of reproducing the vector of measure-
ments by the two models. As we mentioned in Chapter 2, the definition of the set
of path candidates is required for evaluating the probabilities. In the framework of
our model, it is difficult to memorize path candidates naively because the number of
paths increases sequentially and becomes huge soon. For this reason, the develop-
ment of algorithms of generating and resampling paths sequentially in the process of
path observations will be required. Moreover, for maximizing the joint probability,
the application of the EM algorithm or the variational Bayesian method and perhaps
the development of a new estimation method will be discussed in the future work.

We will also examine the relationship between the definition of the time dis-
cretization interval and the sequential route choice model. For applying the sequen-
tial link measurement model, we have to assume that travelers make decisions at a
certain time interval. When the lengths of links in a network differ from each other,
the interval of time discretization is often defined by the travel time of the short-
est link. In this case, we will assume that travelers choose the same link iteratively
when they move on long links. The distribution of the true location on link and the
definition of the utility function of staying at the same link will be examined in the
future work.

Since the model includes the aspect of time, we will develop the framework to
the activities in time-space networks. Based on the activity path choice model, which
is presented in Chapter 6, we will identify the path in time-space networks and esti-
mate the mechanisms of the activity path choice behavior, using GPS data. We have
collected GPS data of pedestrians in city centers through multiple surveys, and will
use it to investigate the paths in time-space networks.

The structural estimation method proposed in Chapter 3 is applicable to not only
route choice models but also other transportation behavior models with uncertain
measurements. We expect the development based on various data and models.

In Chapter 4, we propose a Markovian route choice model with the sequential
discount rate and present its application to the gridlock network analysis. By con-
sidering the sequential discount rate, we can describe the mechanisms of myopic
decisions in route choice behavior, which is dependent on the environment close to
the decision makers.

In the future work, we will investigate the interpersonal heterogeneity of the
sequential discount rate, because the parameter indicates the decision making dy-
namics and it is assumed to largely depends on personal characteristics of travelers.
In the analysis in Chapter 4, it is assumed that all travelers have the same value of
the sequential discount rate. We will examine its dispersion among travelers by ex-
tending the model to e.g., the mixed logit model or the latent class model. We will
also investigate the relationship between the value of the sequential discount rate
and the temporal and spatial situations of networks, using the large amount of data
source.

The framework of estimating Markovian route choice models using real-time tra-
jectories will be developed in the future work. Markovian route choice models, such
as the RL model and β-SRL model, which is proposed in Chapter 4, do not require
the information of entire trips but only the destination and link transitions for esti-
mating parameters. The destination is required for evaluating the value functions,
which are the expected maximum utilities of dynamic discrete choice models. How-
ever, the identification of the destinations is a big issue in the case of using real-time



7.2. Future research 125

trajectories. We are developing algorithms for identifying destinations, and their
validation will be presented in the future work.

The estimation of the β-SRL model takes time to calculate, because the system of
non-linear equations has to be solved to evaluate the route choice probabilities. As
is discussed in Mai, Frejinger, and Bastin, 2015, methods for reducing the computa-
tional time are required for applying the model to real large-scale networks.

In Chapter 5, we focus on that the cyclic structures in networks cause the di-
vergence of the Bellman equation and unreasonable flows, and introduce a method
for restricting path set by incorporating the parameter of the time-constraint. The
method does not remove all cyclic paths, and do solve the computational challenges
of Markovian route choice models in reasonable time.

We define the value of the time-constraint arbitrarily in the analyses of Chapter 5,
but in the future work, we will discuss the way of the definition and the validation of
the time-constraint. We will examine the set of paths that are used in real networks,
using real trajectories, and present a method for defining the time-constraint.

We also will apply the method to estimating route choice models, which is dis-
cussed in Chapter 3 and 4. Because the same problem of the divergence of the Bell-
man equation can be seen in the model estimation, it is meaningful to examine the
possibility of application of the path restriction to estimators.

We show that the divergence of the expected maximum utilities is restrained us-
ing a simple network analysis, and we also discuss the condition of the convergence
as the inequality of the spectral radius of the incidence matrix defining link costs.
The theoretical discussion of the convergence condition in the case of incorporating
the time-constraint will be presented in the future work.

In Chapter 6, we apply the Markovian route choice model with the sequential
discount rate and the time-constraint to an activity network, and present a pedes-
trian activity-based network design problem as the framework of bi-level and bi-
objective programming.

We define the utility function of the time use in an activity network as a quadratic
function of the elapsed time from departing the initial node. More realistically, the
utility function should be defined as a function of the duration time at each location
to describe the law of diminishing marginal utility. However, in Markovian route
choice models, the utilities of paths are always calculated in the link additive way,
which is a problem for expressing realistic path utilities, such as considering effects
of the elapsed time or the distance from the middle of the paths. The way of defining
utility functions of Markovian route choice models will be discussed in the future
work. The balance between the size of staying utilities and moving costs will also be
examined.

For solving the network design problem, we investigate the Pareto front using
a simple solution method of metaheuristics. This algorithm may result in the local
optimal solution; therefore, the test and the development of solution methods to
obtain more precise solutions will be presented in the future work. More efficient
algorithms of solving both the network design problem and the activity assignment
are required for applying to large-size networks.
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Appendix A

Appendix to Chapter 3

A.1 Link switching

The link-based route measurement model often involves difficulties with respect to
link connectivity due to its myopic optimization. Figure A.1 illustrates an example
in which a path r = [2, 4, 6] (expressed as the bold solid line) is estimated given
measurements (m̂1, m̂2, m̂3) although the actual path is r = [2, 7, 10] (expressed as
the dashed line), as follows. Link a1 = 2 is initially identified as the true state at
t = 1 by the link-based route measurement model, and then the set of candidate
states for a2 is A(a1 = 2) = {2, 4, 5, 7}. Based on the calculation of link likelihoods
p(a2|m̂2, 2), a2 is determined as link 4. In this case, the set of possible states for
a3 is A(a2 = 4) = {1, 3, 4, 6}; however, given the locations of m̂3 = (m̂3

1, m̂3
2, m̂3

3),
it seems that the measurements are not likely to correspond to any links in A(a2).
Nevertheless, since a2 = 4 is identified as the true state at t = 2, the model has
to determine the true state at t = 3 from A(a2), and thus a3 is identified as link 6.
The example depicts a failure case in which a measurement error at a certain time
period causes the subsequent errors, and this is a problem of the link-based route
measurement model.
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FIGURE A.1: Example of errors in path estimation

In order to solve this problem, we introduce the link switching algorithm (Figure
A.2) to the link based measurement model. The algorithm is described as follows:

Step 1: Calculate the link likelihoods p(at|m̂t, at−1) of all candidates for at ∈ A(at−1)
using Equation (3.5).
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STEP1: Calculating link likelihoods

STEP3: Calculating measurement equation at (t+1)

where,

STEP2: Sorting candidates by likelihoods

r = 1

No

No

Yes
Yes

FIGURE A.2: Flow of link switching algorithm

Step 2: Sort and label the candidate links by the likelihoods p(at|m̂t, at−1) as [at,1, . . . , at,k, . . . , at,|A(at−1)|],
which satisfy:

p(at,1|m̂t, at−1) ≥ · · · ≥ p(at,k|m̂t, at−1) ≥ · · · ≥ p(at,|A(at−1)||m̂
t, at−1), (A.1)

where 1 ≤ k ≤ |A(at−1)| is the suffix of rank.

Step 3: Set k = 1, and calculate the measurement log-likelihood LLmk of at+1
given the measurements m̂t+1 and the state at,k:

LLmk = log
(

p(m̂t+1|at+1; σat+1)
)

, (A.2)

where

at+1 = arg max
a

p(a|m̂t+1, at,k). (A.3)

Step 4: Finish the algorithm if the following inequality with the convergence tol-
erance γ is satisfied:

LLmr

J
> γ, (A.4)

then identify at = at,k. Otherwise, go to Step 3.
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Step 5: If k = |A(at−1)|, finish the algorithm and identify at = at,1, and otherwise,
set k = k + 1 and go back to Step 3.

A.2 Fluctuation of estimated values of parameters

Figure A.3 shows the fluctuation of estimated parameter values in the structural
estimation process, which is the result of the case study in Section 3.6.2.
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FIGURE A.3: Fluctuation of estimated values of parameters
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Appendix B

Appendix to Chapter 5

B.1 Condition to solve Bellman equation

For the MTA, the inequality (5.17) regarding the spectral radius of the incidence
matrix W is a necessary and sufficient condition to solve the Bellman equation. We
here discuss the relationship between the network condition and the spectral radius
through a numerical example with a simple network.

Using a cyclic network, illustrated in Figure B.1, we calculate the spectral radii
of the matrices W with various values of θ shown in Table B.1. The results show that
Equation (5.17) is not satisfied and the expected minimum cost diverges when the
network includes cycles and θ is small. In this case, we cannot solve the Bellman
equation when θ is less than or equal to 0.4. From above discussions it is concluded
that the expected minimum cost cannot be solved with a small perception param-
eter. In other words, existing approaches retain the instability in the calculation of
convergence.

*Link cost

*

FIGURE B.1: A simple cyclic network

TABLE B.1: Spectral radius of the matrix W

θ 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
ρ(W) 0.45 0.51 0.59 0.68 0.78 0.91 1.05 1.23 1.44 1.70
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Appendix to Chapter 6

C.1 Equivalent optimization model

The activity network loading problem is:

min z( f ) = −∑
ij

∑
t

vt
ij f t

ij + ∑
o∈O

∑
ij

∑
t

1
µ

f o,t
ij log f o,t

ij

− ∑
o∈O

∑
i∈N

∑
t

1
µ

(
∑

j∈N
f o,t
ij

)
log

(
∑

j∈N
f o,t
ij

)
, (C.1)

subject to,

∑h f o,t−1
hi − ∑j f o,t

ij − ηt
oiqod + ηt

idqod = 0, ∀i ∈ N , ∀t ∈ {0, 1, ..., T} (C.2)

f t
ij = ∑l f l,t

ij , ∀(i, j) ∈ A, ∀t ∈ {0, 1, ..., T} (C.3)

f l,t
ij ≥ 0, ∀(i, j) ∈ A, ∀t ∈ {0, 1, ..., T}, ∀o ∈ O

(C.4)

where ηt
li equals one if t = T and i = l and zero otherwise, and ηt

il equals one if t = 0
and i = l and zero otherwise. The edge flow f t

ij is not defined and equals zero if t
is smaller than zero or larger than T. It is described that Equations (C.1)-(C.4) are
equivalent to the path choice model in the activity network as follows.

Proof. We first define the Lagrangian as follows:

L( f , µ, λ) = z( f ) + ∑
t

∑
l

∑
i

φl
t,i

(
∑
h

f l,t−1
hi − ∑

j
f l,t
ij − ηt

liql + ηt
ilql

)

+ ∑
ij

∑
t

λt
ij

(
f t
ij − ∑

l
f l,t
ij

)
, (C.5)
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then KKT-conditions is formulated as below:

∂L
∂ f l,t

ij

=
1
µ

log
f l,t
ij

∑j f l,t
ij

− vt
ij + φl

t+1,j − φl
t,i = 0, if f l,t

ij > 0, (C.6)

∂L
∂ f l,t

ij

=
1
µ

log
f l,t
ij

∑j f l,t
ij

− vt
ij + φl

t+1,j − φl
t,i > 0, if f l,t

ij = 0, (C.7)

∂L
∂φl

t,i
= ∑

h
f l,t−1
hi − ∑

j
f l,t
ij − ηt

liql + ηt
ilql , (C.8)

∂L
∂λt

ij
= f t

ij − ∑
l

f l,t
ij . (C.9)

Assuming f l,t
ij > 0, Equation (C.6) is re-formulated as:

1
µ

log
f l,t
ij

∑j f l,t
ij

− vt
ij + φl

t+1,j − φl
t,i = 0

⇔
f l,t
ij

∑j f l,t
ij

= exp[µ(vt
ij + φl

t+1,j − φl
t,i)]

⇔ pl
t(j|i) = exp[µ(vt

ij + φl
t+1,j − φl

t,i)], (C.10)

where the transition probability between states (t, i) and (t + 1, j), pl
t(j|i) is equiva-

lent to the branching fraction of flow f l,t
ij / ∑j f l,t

ij . Because the sum of the probability
equals one, we get the following equation:

φl
t,i =

1
µ ∑

j
exp[µ(vt

ij + φl
t+1,j)]. (C.11)

This formulation is equivalent to the expected minimum cost from states (t, i) to
(T, l), and finally we get the formulation of the transition probability by substituting
Equation (C.11) to Equation (C.10):

p(T,l)
t (j|i) =

exp[µ(vt
ij + φ

(T,l)
t+1,j)]

∑j′ exp[µ(vt
ij′ + φ

(T,l)
t+1,j′)]

. (C.12)

This is equivalent to the probability of the path choice model in time-structured net-
work. ■

C.2 Activity patterns with different βs

The time-space discount rate β in the activity path choice model describes the decision-
making dynamics of traveler. We change the parameter β and generate 1000 activity
paths, which depart at node 18 in the Matsuyama network in Chapter 6 with the
time-constraint of 90 minutes. Figure C.1 shows the most frequent activity patterns
in the case that β is 1 (a) and 0.8 (b), respectively. When β = 1, travelers optimize
their activities within the time-constraint and spend 81 minutes in the network. On
the other hand, when β = 0.8, travelers stay at only node 18 and the total duration



C.3. Flow of the solution algorithm 135

time is only 45 minutes. It is because travelers behave myopically and optimize their
decisions at each timing.
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FIGURE C.1: The most frequent activity patterns with different βs

C.3 Flow of the solution algorithm

Figure C.2 shows the flow of the solution algorithm, which is used for the case study
in Section 6.5 in Chapter 6.
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Initial solution & network con�guration

STEP1: Activity assignment

STEP4: Network Update

STEP3: Acceptance identi�cation

If new solution is accepted, we add it to

the set of Pareto front solution

STEP2: Evaluation of 

1) Objective function

2) Arc perfoemance value

Finish iteration

Yes

No

FIGURE C.2: Flow of Network Update algorithm
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Appendix D

Related publications

This chapter has been updated on January 4, 2018.

• Chapter 3 has been presented by Yuki Oyama at the conference of hEART 2016
in Delft as A link-based map matching algorithm with structural estimation method
and published as:

Oyama, Y. and Hato, E., 2017. Structural estimation for route choice models con-
sidering link specificity of measurement error variances, Journal of JSCE Series D3:
Infrastructure Planning and Management, 73(5), 597-608, and also submitted to
as:

Oyama, Y., Hato, E. Link-based measurement model to estimate route choice parame-
ters in urban pedestrian networks, for publication on Transportation Research Part C:
Emerging Technologies..

• The content of Chapter 4 has been presented by Yuki Oyama at the confer-
ence of 11th ERTICO in Glasgow as Trajectory-oriented traffic management using
sequential discount rate: a case study of the Great East Japan Earthquake, and has
been published as:

Oyama, Y. and Hato, E., 2017. A discounted recursive logit model for dynamic grid-
lock network analysis, Transportation Research Part C: Emerging Technologies 85,
pp.509-527 and

Oyama, Y. and Hato, E., 2017. Route choice analysis in disaster network using gen-
eralized recursive logit model, Journal of Traffic Engineering 3(5), 1-10.

• The content of Chapter 5 has been published as:

Oyama, Y. and Hato, E., 2017. Stochastic traffic assignment in time-structured net-
works, Journal of JSCE Series D3: Infrastructure Planning and Management 73(4),
186-200 (in Japanese), and also submitted as:

Oyama, Y., Hato, E. Prism-based path set restriction for solving Markovian traffic as-
signment problem, for publication on Transportation Research Part B: Methodological.

• The contents of Chapter 6 have been presented by Yuki Oyama in the confer-
ences of 21st International Conference of Hong Kong for Transportation Studies (HK-
STS) as Pedestrian activity model based on implicit path enumeration and 6th sym-
posium arranged by European Association for Research in Transportation (hEART)
as Markov assignment for a pedestrian activity-based network design problem. They
have also been published as:

Oyama, Y. and Hato, E., 2016. Pedestrian activity assignment problem with time-
space constraint and path correlation, Journal of City Planning 51(3), 680-687 and

Oyama, Y. and Hato, E., 2017. Pedestrian activity-based network design based on
multi-objective programming, Journal of City Planning 52(3), 810-817.
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